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Resumo
O crescente desenvolvimento de métodos fiáveis de análise de estruturas piezoelétricas laminadas

em compósito com atuação por piezoelétricos é motivado pela ampla aplicabilidade em engenharia

aeroespacial, complementando a elevada resistência especı́fica dos materiais compósitos com a ca-

pacidade de monitorização e atuação dos materiais piezoelétricos.

Consequentemente, este trabalho apresenta um estudo computacional em análise estática e de

vibrações livres com dois elementos finitos de placa electro-elásticos, implementados utilizando uma

subroutina disponı́vel para definir elementos próprios do utilizador (UEL), no software comercial Abaqus.

Em ambos, uma descrição Layerwise para três lâminas discretas é utilizada para o campo de desloca-

mentos da teoria de primeira ordem de deformação por corte de placas laminadas, assim como uma

expansão linear ou quadrática do potencial elétrico ao longo da direção transversal de cada camada,

UEL1 e UEL2, respetivamente.

Os modelos desenvolvidos são comparados com as soluções exatas tridimensionais, para o caso

de placas simplesmente apoiadas, reportadas na literatura. Para tal consideram-se duas sequências

de laminagem com diferentes materiais piezoelétricos nas faces das mesmas, desde o caso de placas

finas, moderadamente espessas a espessas.

A capacidade preditiva em resposta estática evidenciada pelos modelos é demonstrada pela con-

cordância com as soluções exatas, nomeadamente ao nı́vel de deslocamentos e potencial, assim como

de tensões no plano para placas finas e moderadamente espessas. Em análise de vibrações livres, os

doze primeiros modos e frequências de vibração previstas pelos modelos implementados revelam uma

boa concordância com as soluções exatas, mesmo para placas mais espessas.

Palavras-chave: Placas piezoelétricas em compósito, Abaqus user-defined element, Teoria

Layerwise, Teoria de primeira ordem, Modelação electro-elástica.
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Abstract
The development of reliable methods for analysis of piezoelectric multilayered composite structures

is motivated by a wide range of applications in aerospace engineering, combining high specific mechan-

ical properties of composite materials, with monitoring and actuation capabilities of the piezoelectric

materials.

Consequently, this work presents a computational study in static and free vibration analysis, using

two electro-elastic plate elements implemented in a user-defined element (UEL) subroutine available in

Abaqus. On both of them, a Layerwise description for three discrete layers is used, assuming in each

layer a first-order shear deformation displacement field, as well as a linear or quadratic z-expansion of

the electric potential, respectively, UEL1 and UEL2.

Furthermore, the models here developed are compared with three-dimensional exact solutions, avail-

able for the case of simply-supported plates reported in the literature. For this purpose, two multilayered

plates with different piezoelectric materials in the face layers are considered, from the case of thin,

moderately thick to thick plates.

The models predictive capabilities in static response for the displacements, electric potential and

in-plane stresses is demonstrated to be in agreement with the exact solutions for thin and moderately

thick plates. In free vibration analysis, the first twelve vibration modes and frequencies predicted by the

developed models, reveal a good accuracy of the models comparatively to the exact solutions, even for

thicker plates.

Keywords: Piezoelectric composite plates, Abaqus user-defined element, Layerwise theory,

First-order theory, Electro-elastic modelling
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Chapter 1

Introduction

1.1 Motivation and Topic Overview
New challenges have emerged in the field of structural design, whether in aerospace, automobile

or naval engineering. Designing lightweight and very stiff structural members has been achieved using

multilayered composites. The resort to these materials represents more than 50% of modern commercial

aircraft’s structures [1], reducing its weight and consequently reducing the fuel consumption, as well as

pollutant emissions.

In the current days, a new era of advanced structures with monitoring and actuation capabilities is a

goal. These intelligent structures behave as close-loop systems, including health monitoring features,

active vibration control, noise suppression, energy harvesting or even aeroelastic control. Viscoelastic

materials, shape memory alloys, piezoelectric and piezomagnetic materials have been investigated due

to a large number of applications in smart structures. In these types of materials, complex constitutive

behaviour laws are found, leading to a multidisciplinary field of research. Multiphysics phenomena such

as piezoelectricity, magnetostriction or hygrothermal effects, in general anisotropic elastic materials, can

be translated into a coupling phenomena between continuum fields, whether mechanical, electrical,

magnetic or thermochemical as can be seen in Heyliger [2], Lee and Saravanos [3], Moleiro et al. [4]

and in Campos et al. [5].

Piezoelectric materials, such as the piezoceramic lead zirconate titanate (PZT) and polar polymers

such as Polyvinylidene Fluoride (PVDF), have the ability to generate an electric potential difference and

thus, an electric field arises from a mechanical deformation (direct piezoelectric effect), likewise me-

chanical deformation is produced when an electric field is applied (converse piezoelectric effect). These

properties make piezoelectric materials capable to be tailored to act in active control of dynamic sys-

tems. For instance in distributed sensors, mechanical energy is transformed to an electric output for

monitoring purposes, and in actuators, electric energy is converted to mechanical displacement. His-

torically the direct piezoelectric effect was discovered by Curie brothers [6] in 1880, while investigating

pyroelectric crystals. The converse piezoelectric effect is only proved one year later in Lippmann [7],

using fundamental thermodynamic principles.

The increased interest in piezoelectric materials is due to a wide range of their applications in smart
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structures, particularly in aerospace structures such as wings, controls and high flexible long satellite

panels. Lightweight and very stiff structures having monitoring and actuation capabilities can be de-

signed combining piezoelectric layers with multilayered composites. In order to study the engineering

applications of these types of structures, robust and accurate methods, either analytical or numerical,

must be developed and experimentally validated.

By the 70’s, exact three-dimensional (3D) solutions for the fundamental equilibrium equations of

multilayered composite plates is derived by Pagano [8]. A zig-zag through-thickness continuous dis-

placement field is demonstrated, as well as for the transverse stresses, leading to the commonly known

C0
z interlaminar continuity conditions. In the following years, Heyliger [2, 9, 10] extended the work of

Pagano, considering transversely poled piezoelectric layers (extension mode actuators) in multilayered

orthotropic composite plates. Static and dynamic 3D equilibrium electro-elastic equations for simply-

supported piezoelectric composite plates are solved by imposing both essential and natural boundary

conditions and a compatible continuous description for the several transverse fields. More recently,

electro-elastic exact solutions for piezoelectric multilayered composite plates are reported by Moleiro et

al. [11] for static response, and in Moleiro et al. [12] for free vibrations. Also in Moleiro et al. [13],

both static and free vibration exact solutions are reported for more piezoelectric multilayered composite

plates, as well as for soft core sandwich plates. In a multilayered composite plate with skin layers made

of extension mode actuators under applied transverse electric field, the piezoelectric layers undergo an

in-plane deformation, where the lateral dimensions are increased or decreased, forcing the remaining

substrate elastic layers in the multilayered composite core to deform. Further remarkable exact solu-

tions are developed by Vel and Batra [14] considering an axially poled piezoelectric shear actuator core

between elastic face layers, as well as by Baillargeon and Vel [15] for vibrations and active damping of

composite plates, with embedded piezoelectric shear mode actuators.

Moreover, from the above-mentioned Heyliger’s exact solutions, the C0
z -requirements for the me-

chanical domain imply continuous displacements and transverse stresses at the layer’s interfaces, while

in-plane stresses are typically discontinuous between adjacent layers due to a possible change of the

mechanical properties along the stacking scheme. Likewise, in-plane strains must be continuous at the

layer’s interfaces, although the change in mechanical properties could lead to discontinuous transverse

strains. In terms of the electric domain, the electric potential must exhibit C0-continuity at the inter-

faces, as well as the transverse electric displacement in the absence of internal electrodes, contrasting

to the discontinuous in-plane electric displacements in consequence of different electric properties. In

the same way as the in-plane strains, also the in-plane electric field components are through-thickness

continuous, with C0-continuity at the interfaces.

Although the exact solutions are a very resourceful mathematical description without any simplified

assumptions, they represent a limited spectrum of combinations of essential and natural boundary con-

ditions for the fundamental electro-elastic equations. Furthermore, in static analysis of piezoelectric

composite plates only simply supported plates are considering and two load cases are exactly solved,

namely an applied bi-sinusoidal distributed transverse load and a bi-sinusoidal electric potential, in order

to respect the boundary conditions. Consequently, finite element models for multilayered piezoelectric
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plates and shells appear to be necessary for studying more complex smart structures. However, accu-

rate and efficient finite element models could be formulated by taking into account the exact solutions for

the validation of the finite element models, mixing plate or shell theories and electric potential approxi-

mations.

The state of the art of theories and finite element models for multilayered composite structures is

well presented by Carrera [16]. Also, Reddy’s books [17, 18] are remarkable introductions to the study

of laminated plates and the finite element method, respectively. For piezoelectric finite elements, Sara-

vanos [19] presents the fundamental principles and computational methods for analysis of piezoelectric

plates, shells and beams, assuming a linear through-thickness electric potential, while Benjeddou [20]

reports a comprehensive survey in the field of electromechanical coupled analysis, using the finite el-

ement method. From these articles and books, sophisticated formulations must be applied in order to

describe the overall physical mechanism that governs the response of multilayered composite plates

and the piezoelectric effect associated with the presence of piezoelectric sensors or actuators.

For plates and shells, in which the transverse dimension, i.e., the thickness, is at least one order of

magnitude lower than the in-plane dimensions, the three-dimensional problem can be reduced to a bi-

dimensional one, under plane stress assumptions. In fact, bi-dimensional electro-elastic plate and shell

finite elements differ from the classical ones by adding electromechanical coupling, and consequently

electric degrees of freedom (DOFs) must be considered. Also, in Benjeddou [20] it is proved that the

assumption of a through-thickness linear electric potential systematically neglects the contribution of the

induced electric potential and consequently a partial electromechanical coupling is achieved. In order to

enhance the electromechanical coupling, one could assume a quadratic through-thickness expansion of

the electric potential, as suggested by the same author [20].

From the point of view of the calculus of variations applied to continuum solid mechanics, the Princi-

ple of Virtual Displacements (PVD) leads to a classical displacement formulation, while mixed variational

principles, such as the Reissner’s Mixed Variational Theorem (RMVT), which is well reviewed by Carrera

[21], leads to a mixed displacement-strain-stress formulation. Noting that in coupled electro-elastic anal-

ysis, the electric potential is a primary variable, while the electric field and the electric displacement field

are secondary variables, which can be introduced in the mixed variational formulations in a similar way

as for strains and stresses. The mixed variational theorems represent an efficient approach to a priori

fulfill the C0
z -requirements for the displacements, electric potential, transverse stresses and transverse

electric displacements of piezoelectric multilayered plates, demonstrated by the exact solutions.

According to Carrera [21], both PVD and Reissner’s mixed and classical forms represent the ways

to choose the unknown variables for the analysis of multilayered plates, where these variables could be

described using Equivalent Single Layer (ESL) models or using Layerwise Theories (LW), as suggested

by Reddy [17]. The ESL models are the most simple, and consequently with lowest computational effort,

where the unknown variables are determined for the whole plate. Pushing forward in accuracy and in

the number of variables, the LW descriptions allow to take each layer of the stacking scheme as an

independent layer with respective governing equations and interface continuity conditions. A review on

LW theories is presented by Li [22], dividing these theories in discrete LW models, with an assembly of
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individual single layers through interlaminar continuity conditions, and in integrated LW models, where

the transverse fields, either for the primary or secondary variables, are approximated by one-dimensional

interpolation functions, being the in-plane variables discretized with bi-dimensional finite elements.

Electro-elastic integrated LW classical models were developed earlier by Saravanos et al. [23], using

a linear z-expansion for the electric potential in each layer, and more recently, Semedo Garção et al. [24]

and Robaldo et al. [25] extended the previous work to higher order z-expansion models for the electric

potential. In order to improve LW classical models from the point of view of the C0
z -requirements for the

secondary variables on piezoelectric composite plates, Garcia Lage et al. [26] and Carrera et al. [27]

developed LW mixed models. Moreover, Moleiro et al. [28, 29] developed LW mixed models based on

the least-squares method for analysis of piezoelectric multilayered composite plates, where the least-

squares models appear to be insensitive to shear locking, which is typically present in the analysis of

thin plates with LW classical models.

Axiomatic theories based on displacements play an important role in the analysis of multilayered

composite plates and shells with bi-dimensional finite elements on a first intuitive approach, with low

computational cost. Hence, in a classical axiomatic approach for electro-elastic plates, the displace-

ments and the electric potential are a priori assumed to have prescribed variation along the thickness

direction, where both ESL and discrete LW theories can be used to model the overall multilayered plate.

Reddy’s book [17] provides the formulation of the common ESL axiomatic theories for plates and shells,

where analytical solutions and numerical ones are largely presented. Regarding discrete LW models, Li

[22] reviewed the main axiomatic theories used for the displacements and Polit et al. [30] for the electric

potential approximations. The discrete LW theories allow formulations for a generalized number of lay-

ers as reported by Carrera [16], as well as in the works by Moreira et al. [31] and Mantari and Guedes

Soares [32], although the same approach could be used for a prescribed number of layers, as by Araújo

et al. [33] and by Lam et al. [34].

For an accurate analysis of thin and moderately thick piezoelectric multilayered composite plates

with bi-dimensional elements, the LW description for the displacement field and for the electric potential

is mandatory to at least fulfill the interlaminar continuity conditions for the primary variables. Since the

electromechanical behaviour of most of the piezoelectric materials is dependent on shear strains, the

First-Order Shear Deformation Theory (FSDT) displacement field could be used as first approximation

for the kinematic description of the discrete layers, combined with a linear or quadratic z-expansion of the

electric potential. A further reduction on the number of unknowns for a discrete LW electro-elastic plate

element can be achieved considering the case of three discrete layers, where a multilayered composite

core is treated as an ESL, with piezoelectric face layers on both top and bottom surfaces.

Powering the use of the finite element method, the commercial finite element softwares are an im-

portant tool for engineers and for academic purposes due to a user-friendly environment with 3D design

capabilities, robust numerical solvers and a large library of finite elements and analysis, where the visu-

alization and interpretation of the results are also facilitated. Abaqus is one of the most used commercial

finite element codes and allows the user to program the stiffness and mass matrices of the elements

used for the desired analysis. In order to implement new and improved finite elements and easily use
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them, the User-Defined Element (UEL) subroutine available in Abaqus, among with others subroutines

can be implemented in Fortran programming language, such as the DLOAD subroutine for prescribing

loads or the DISP subroutine for specifying boundary conditions, accordingly to the instructions present

in the software’s manual [35].

1.2 Objectives
The present thesis concerns a new approach for analysis of piezoelectric composite plates through

discrete layerwise electro-elastic plate finite elements, implemented using Abaqus UEL subroutine. The

model assumes three discrete layers, where a multilayered composite core treated as an ESL is bounded

in both top and bottom surfaces with piezoelectric face layers. Along with a piecewise linear kinematic

description for each discrete layers, both through-thickness linear and quadratic electric potential ap-

proximations are used for comparison purposes, as suggested by Benjeddou [20].

In order to have a comprehensive model verification, two piezoelectric composite plates are con-

sidered, using different piezoelectric materials for the face layers. Moreover, access to static and free

vibrations analysis of simply-supported piezoelectric composite plates with various aspect ratios, follow-

ing the work of Heyliger [2, 9, 10] and Moleiro et al. [11–13, 28] is the main goal. For both static and

free vibration analysis, the stacking schemes of interest will be the same two symmetric piezoelectric

composite plates reported by Moleiro et al. [13] for a/h = 10 and 4, considering also the case of thinner

plates with a/h = 100 and 20.

In static analysis the monitoring and actuation responses are studied through the classical test cases

reported by the previous authors, namely a bi-sinusoidal applied distributed transverse load and an

applied bi-sinusoidal electric potential, for which exact solutions are available and used for verification of

the present models. Furthermore, improvements on the determination of the transverse shear stresses,

using direct integration of the three-dimensional equilibrium equations, as suggested by Reddy [17], is

also an objective.

For free vibration analysis, the homogeneous electric potential boundary conditions concerns the

main focus of interest. In this case, the implemented finite element models are compared to a 3D

piezoelectric element available in Abaqus and to the benchmarked exact solutions reported by Moleiro

et al. [13] for a/h = 10 and 4.

1.3 Thesis Outline
The present thesis is divided in eight chapters, followed by five appendix chapters, concerning the-

oretical demonstrations, detailed matrices introduced in the generalized model and also some comple-

mentary results for thin plates. Briefly, the structure of the thesis contents is the following:

Chapter 1: An introduction to piezoelectric composite plates is made. Historical perspective,

applications, theories and models are also presented as motivation for the present thesis and

associated objectives.

Chapter 2: Background theoretic material related to multilayered anisotropic piezoelectric com-
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posite plates is presented in order to build a solid foundation for the following chapters.

Chapter 3: An axiomatic piezoelectric layerwise model is formulated. The displacement field and

electric potential for three discrete layers is formulated, as well as their derivatives: strains and

electric field, respectively.

Chapter 4: The finite element formulation for the presented models is conducted, leading to

the element mass and stiffness matrices. Numerical techniques are explained, as well as post-

processing procedures.

Chapter 5: Abaqus UEL subroutine implementation in Fortran is discussed, including the linking

to Abaqus is explained.

Chapter 6: Static analysis results for applied load and applied potential are provided and com-

pared to exact solutions for simply-supported piezoelectric composite plates, considering two

stacking schemes, from thin to thicker plates.

Chapter 7: Vibration frequencies and associated modes for simply-supported piezoelectric com-

posite plates with two stacking schemes, are presented and compared to Abaqus-3D elements

solutions and exact solutions, from thin to thicker plates.

Chapter 8: Concluding remarks and achievements regarding the present work are presented,

along with future work suggestions.

1.4 Notation
Along the present work, several tensors with different orders are used. The notation used to represent

the tensors follows the classical Einstein notation, where the order of the tensor is the same as the

number of indices used, as well as the summation rule. Besides the Einstein convention, vector and

matrices are sometimes represented using invariant notation in order to avoid a large number of indices

in some variables. Although bold written tensors are simpler, this notation doesn’t clearly distinguish first

order tensors (vectors) and second order tensors (matrices). Therefore, vector entities are represented

using braces ({·}), while matrices are represented using square brackets ([·]).

There are also some conventions in the subscripts that the author wants to highlight. First, the

subscript 0 indicates mid surface of the layer while the subscripts inf and sup stays for the bottom and

top surfaces of the layer, respectively. Typically, an isolated subscript or superscript (k) refers to the

k-discrete layer: top, core and bottom layers.
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Chapter 2

Background

In this chapter, the fundamental principles and equations regarding the modelling and analysis of mul-

tilayered piezoelectric composite plates are presented. The theory of linear elasticity is combined with

linear dielectrics equations, providing an electromechanical coupling phenomena present in piezoelec-

tric materials. Consequently, the main axiomatic theories for multilayered plates and electric potential

approximations are discussed for the modelling and analysis of piezoelectric composite plates.

2.1 Anisotropic Electroelasticity
A deformable continuum body under an elastic deformation experiments a mechanical evolution

between the undeformed configuration and the deformed one, featured in the displacement field com-

ponents ui, with i = {1, 2, 3}. From the displacement field, the deformation of the material fibers can be

measured through the definition of the Green-Lagrange tensor, Eij , as:

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uj
∂xi

∂ui
∂xj

)
(2.1)

Whenever the displacements are much lower than a reference initial dimension of the body, small dis-

placements can be assumed. Hence, the last higher order term in the Green-Lagrange tensor definition

can be neglected, leading to the infinitesimal or linear strain tensor, εij , defined as,

Eij ≈ εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.2)

where for i 6= j, the engineering shear strains or distortions, γij , are defined as follows:

γij = 2εij =
∂ui
∂xj

+
∂uj
∂xi

for i 6= j (2.3)

From the theory of linear elasticity, the material response in an elastic deformation is a linear function

of the deformation, which is measured by the strain tensor. This strain-stress relation allows the calcu-

lation of the Cauchy stress tensor σij and defines the so-called constitutive equation or law. For a linear

elastic anisotropic material, the material behaviour is governed by the generalized form of the Hooke’s
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law, that holds,

σij = Cijklεkl (2.4)

where Cijkl is the 4th-order stiffness or elastic tensor, with 34 =81 scalar components. From an angular

momentum balance to an infinitesimal piece of volume, within an elastic body in equilibrium, it is known

that the Cauchy stress tensor is symmetric (σij = σji), as well as the linear strain tensor (εkl = εlk), by

definition, in equation (2.2). Consequently, in the constitutive equation (2.4), from the symmetry of the

stress tensor, the elastic tensor is symmetric in i and j (Cijkl = Cjikl). Similarly, from the strain tensor

symmetry, the elastic tensor is also symmetric in k and l (Cijkl = Cijlk). These symmetries reduce the

81 scalar components to only 6×6=36 independent components.

In piezoelectric materials, the elastic and electrical domains are coupled through the direct and con-

verse piezoelectric effects. Consequently, the electrostatic theory of dielectric materials must be taken

into account in order to describe the overall response of this type of materials. Maxwell equations

arise as a set of four differential equations that describe the electromagnetic field in dielectric medi-

ums (Serway’s book [36]). Following Reddy’s book [17], negligible magnetic effects may be assumed in

piezoelectric materials, leading to an electro-quasi-static approximation, where the time derivative of the

magnetic field components Bi in the Faraday’s law can be neglected as follows,

εijk∇jEk = −∂tBi = 0 (2.5)

where ∇j is the spatial gradient operator in the j-direction, Ek the electric field component in the k-

direction, ∂t the time derivative operator and εijk is the Lévi-Civita symbol. In line with equation (2.5),

the rotational of the electric field is null, yielding a conservative electric field expressed as a gradient of

a certain scalar field as shown,

Ek = − ∂φ

∂xk
(2.6)

where the scalar field φ is known as electric potential. The negative sign appears from the opposing

definitions of a mathematical gradient and the physical convention for the electric field direction.

A dielectric material under an applied external electric field, causes a displacement of bound (fixed)

charged elements (atomic nuclei and electrons) and consequently a local electric dipole moment is

generated, leading to a polarized medium neutral in charge. Opposing to bound charges, the free

charges are the ones that turn the dielectric material non-neutral, inducing the electric displacement

field components Di. The electric displacements for an homogeneous linear dielectric material are

obtained using the constitutive equation for the electric field as,

Di = εijEj (2.7)

where the constants of proportionality are the dielectric constants, or electric permittivities, figured in the

2nd-order dielectric tensor εij , with six independent components.

The governing constitutive relations for piezoelectric materials are the generalized Hooke’s law (2.4)

and the constitutive electric field equation (2.7), both of them modified to account for a linear electrome-
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chanical coupling through the introduction of piezoelectric coefficients. These piezoelectric coefficients,

present in the 3rd-order piezoelectric tensor eijk, add a linear dependency of the stresses on the electric

field, as well as a linear influence of the strains on the electric displacements. The general form of these

equations is derived from the first thermodynamic principle, as can be seen in the Appendix A, leading

to the following piezoelectric constitutive equations,

σij = Cijklεkl − eijkEk

Di = ejkiεjk + εijEj

(2.8)

or using Kelvin-Voigt notation for the higher-order tensors,

{σ} =
{
σ1 σ2 σ3 σ4 σ5 σ6

}T
=
{
σ11 σ22 σ33 σ23 σ13 σ12

}T (2.9)

{ε} =
{
ε1 ε2 ε3 ε4 ε5 ε6

}T
=
{
ε11 ε22 ε33 γ23 γ13 γ12

}T (2.10)

the piezoelectric constitutive equations (2.8) can be written in a single-index notation as:

σi = Cijεj − eikEk

Dk = ekjεj + εklEl

(2.11)

where i, j = {1, .., 6} and k, l = {1, 2, 3}, noting that for k = l and j = {1, 2, 3} results εj = εkl, as well as

for k 6= l and j = {4, 5, 6} results εj = 2εkl = γkl.

Assuming an hyperelastic material, the Cij elastic matrix must be symmetric, i.e, Cij = Cji, remain-

ing only 21 independent constants for the elastic tensor, as can be seen in Reddy [17]. Also, when

considering general anisotropic hyperelastic piezoelectric material, there are only 18 independent com-

ponents for the piezoelectric tensor and only 6 for the dielectric tensor.

Further reductions can be achieved taking into account material symmetries as demonstrated in

Reddy’s book [17]. Beginning with materials that don’t have any material symmetries, called triclinic

solids, the number of independent material properties is the same as for general anisotropic materials.

By adding one reflective symmetry plane, monoclinic materials are found, having 13 independent elastic

constants, since C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0. Extending the unique plane

of symmetry in triclinic solids, an orthotropic solid has three mutually orthogonal planes of symmetry,

leading to 9 independent elastic constants, where normal stresses are decoupled from the shear strains,

and vice-versa.

Moreover, in transversely poled orthotropic piezoelectric materials, where the transverse x3-direction

is the poling direction, the piezoelectric coefficients tensor has only 5 nonzero components (e31, e32, e33,

e24 and e15) and the dielectric tensor 3 independent components (ε11, ε22 and ε33). According to Bail-

largeon et al. [15], in the case of axially poled piezoelectric materials, the only nonzero piezoelectric

9



coefficients are e11, e12, e13, e35 and e26 when x1-axes is the poling direction, likewise e21, e22, e23, e34

and e16 in the case of being x2-axes the poling direction. Consequently, for a thickness-poled piezoelec-

tric orthotropic material, the constitutive equations (2.11) reduce to,

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε1

ε2

ε3

ε4

ε5

ε6


−



0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 e36




E1

E2

E3




D1

D2

D3

 =


0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 e36





ε1

ε2

ε3

ε4

ε5

ε6


+


ε11 0 0

0 ε22 0

0 0 ε33



E1

E2

E3



(2.12)

For an orthotropic material, the elastic constants Cij can be calculated using the so-called engineer-

ing constants, namely the Young’s modulus with respect to the three cartesian directions (E1, E2 and

E3), the shear moduli Gij on the three xi-xj planes, with i 6= j (G12, G13 and G23), likewise the Poisson’s

coefficients for the same xi-xj planes (ν12, ν13 and ν23). One must pay attention to the nomenclature

used for the electric field components and Young’s modulus, where the same letter is used for both

variables, since no equation is explicitly presented relating both of them. According to Reddy [17], the

elastic constants Cij are given by:

C11 =
1− ν23ν32

E2E3∆
, C12 =

ν21 + ν31ν23

E2E3∆
, C22 =

1− ν13ν31

E1E3∆

C13 =
ν13 + ν12ν23

E1E2∆
, C23 =

ν32 + ν12ν31

E1E3∆
, C33 =

1− ν12ν21

E1E2∆

C44 = G23 , C55 = G13 , C66 = G12

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3

(2.13)

a,aAlso, from the symmetric properties of the compliance tensor (the inverse of the elastic tensor), one

obtains the relation between the Poisson’s coefficients and the Young’s modulus, for i, j = {1, 2, 3} and

i 6= j, as follows:
νij
Ei

=
νji
Ej

(2.14)

In the case where the material has an infinite number of planes of symmetry, the orthotropic material

reduces to an isotropic one, in which the properties are independent on the direction. Isotropic materials

have two independent elastic constants, the Lamé’s constants (λ and µ) or two of the three engineering

10



constants can be chosen: E the Young’s moduli, ν the Poisson’s coefficient and G the shear moduli. The

classic relation between these variables can also be found in Reddy [17]. It can be noticed that in an

isotropic material the dielectric tensor has only one independent component and the piezoelectric effect

cannot exist, i.e., eijk = 0, because the Lévi-Civita symbol (or permutation symbol) is skew-symmetric,

as explained in Campos et al. [5]. A particular case can be found when an orthotropic solid, in which

an orthotropic principal axis is a symmetry axis, is isotropic in the orthogonal plane to that axis, the

so-called transversely isotropic material.

One last simplification can be introduced by considering a plane stress state, which is the typical

scenario of thin and moderately thick multilayered plates, where the transverse direct stresses can be

neglected. Considering a certain layer in the x1-x2 plane, being the x3-direction the thickness direction,

the plane stress state is achieved by forcing the transverse direct stress to be zero, σ3 = σ33 = 0, leading

to the plane stress piezoelectric constitutive equations for orthotropic materials as following:

σ11

σ22

σ23

σ13

σ12


=



Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66





ε11

ε22

γ23

γ13

γ12


−



0 0 e∗31

0 0 e∗32

0 e24 0

e15 0 0

0 0 0




E1

E2

E3




D1

D2

D3

 =


0 0 0 e15 0

0 0 e24 0 0

e∗31 e∗32 0 0 0





ε11

ε22

γ23

γ13

γ12


+


ε11 0 0

0 ε22 0

0 0 ε∗33



E1

E2

E3



(2.15)

The new material properties presented in the plane stress constitutive law (2.15) are reduced plane

stress elastic constants Qij , reduced piezoelectric coefficients e∗ij and reduced dielectric constants ε∗ij
for the constitutive equations (2.12). The reduced plane stress properties are obtained, according to

Araújo et al. [37], as:

Qij = Cij −
Ci3Cj3
C33

, i, j = {1, 2} (2.16a)

Q44 = C44 , Q55 = C55 , Q66 = C66 (2.16b)

e∗3i = e3i − e33
Ci3
C33

, i, j = {1, 2} (2.16c)

ε∗33 = ε33 +
e2

33

C33
(2.16d)

So far, the already presented constitutive laws are written on the material coordinate system (x1, x2, x3),

figure 2.1. In order to use the global coordinate system (x, y, z) basis, a rotation on the plane must be

applied to the constitutive matrices in order to obtain the piezoelectric constitutive law written in the
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global coordinate system, as following:

σxx

σyy

τyz

τxz

τxy


=



Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66





εxx

εyy

γyz

γxz

γxy


−



0 0 ē31

0 0 ē32

ē14 ē24 0

ē15 ē25 0

0 0 ē36




Ex

Ey

Ez




Dx

Dy

Dz

 =


0 0 ē14 ē15 0

0 0 ē24 ē25 0

ē31 ē32 0 0 ē36





εxx

εyy

γyz

γxz

γxy


+


εxx εxy 0

εxy εyy 0

0 0 εzz



Ex

Ey

Ez



(2.17)

or using compact invariant notation as,

{σ} =
[
Q̄
]
{ε} − [ē] {E}

{D} = [ē]
T {ε}+ [ε̄] {E}

(2.18)

where the transformed elastic properties Q̄ij in the [Q̄] matrix are derived from the application of a

rotation matrix of an angle θ, on the x-y plane, to change the basis where the the strains and the

stresses are written, as explained in Reddy’s book [17], leading to,

Q̄11 = Q11 cos4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ +Q22 sin4 θ (2.19a)

Q̄22 = Q11 sin4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ +Q22 cos4 θ (2.19b)

Q̄12 = (Q11 +Q22 − 4Q66) sin2 θ cos2 θ +Q12(sin4 + cos4) (2.19c)

Q̄16 = (Q11 −Q12 − 2Q66) sin θ cos3 θ + (Q12 −Q22 + 2Q66) sin3 θ cos θ (2.19d)

Q̄26 = (Q11 −Q12 − 2Q66) sin3 θ cos θ + (Q12 −Q22 + 2Q66) sin θ cos3 θ (2.19e)

Q̄66 = (Q11 +Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ +Q66

(
sin4 θ + cos4θ

)
(2.19f)

Q̄44 = Q44 cos2 θ +Q55 sin2 θ , Q̄45 = (Q55 −Q44) cos θ sin θ (2.19g)

Q̄55 = Q55 cos2 θ +Q44 sin2 θ (2.19h)
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Likewise, the rotated piezoelectric coefficients ēij and dielectric constants εij , respectively in [ē] and

[ε̄] matrices, are given, according to Reddy’s book [17], as follows:

ē31 = e∗31 cos2 θ + e∗32 sin2 θ , ē32 = e∗32 cos2 θ + e∗31 sin2 θ (2.20a)

ē36 = (e∗31 − e∗32) sin θ cos θ , ē14 = (e15 − e24) sin θ cos θ (2.20b)

ē24 = e24 cos2 θ + e15 sin2 θ , ē15 = e15 cos2 θ + e24 sin2 θ (2.20c)

ē25 = (e15 − e24) sin θ cos θ , εxx = ε11 cos2 θ + ε22 sin2 θ (2.20d)

εyy = ε22 cos2 θ + ε11 sin2 θ , εxy = (ε11 − ε22) sin θ cos θ (2.20e)

εzz = ε∗33 (2.20f)

y

x

x2

x1

θ

Figure 2.1: Material coordinate system (x1, x2) and global one (x, y).

2.2 Fundamental Electro-Elastic Equations
Fundamental electro-elastic equations can be derived recalling the equilibrium equations for elastic

continuum bodies and dielectric continuum domains. In the mechanical domain, a compatible stress

state and displacement field must verify the equilibrium conditions, while in the electrical domain, the

conservation of electric charge equation of electrostatics must be respected.

The fundamental differential equations of motion for an elastic body, the so-called equilibrium equa-

tions, are achieved using a linear momentum balance to an infinitesimal piece of volume within the

body volume domain Ω, subjected to an arbitrary volume force f . Following Reddy [17], the equilibrium

equation in the i-direction, in terms of the Cauchy stress tensor σij and the displacement field ui holds,

∂σij
∂xj

+ fi = ρ
∂2ui
∂t2

on Ω (2.21)

From the electrostatics point of view, the Gauss law for the electric displacement field, which express

the equilibrium of free charges, is valid over the continuum piezoelectric medium [38], and in the absence

of volumetric distributed free charges is written as:

∂Di

∂xi
= 0 on Ω (2.22)

Substituting the constitutive equations (2.8), the strain-displacement equations (2.2) and the field-

potential (2.6) equations into the equations of motion (2.21) and the charge equation (2.22), the govern-
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ing differential equations for piezoelectric materials follow as,

1

2
Cijkl

(
∂2uk
∂xj∂xl

+
∂2ul

∂xj∂xk

)
+ eijk

∂2φ

∂xj∂xk
+ fi = ρ

∂2ui
∂t2

on Ω (2.23)

εij
∂2φ

∂xi∂xj
− 1

2
ejki

(
∂2uk
∂xi∂xj

+
∂2uj
∂xi∂xk

)
= 0 on Ω (2.24)

representing a set of four coupled partial differential equations, which relate the typical cartesian dis-

placement field components (u1, u2, u3) ≡ (u, v, w) and the electric potential φ.

Heyliger’s exact solutions [2, 9, 10] for simply-supported multilayered piezoelectric composite plates

represent an exact approach to solve the coupled partial differential equations (2.23) and (2.24), for

transversely poled orthotropic materials, when a bi-sinusoidal transverse distributed load or a bi-sinusoidal

electric potential is applied, in the absence of volume forces. The fundamental differential equations must

be equipped with essential boundary conditions along with continuity conditions for the displacements,

electric potential, transverse stresses and transverse electric displacement at the layers interfaces.

In order to obtain an integral form, also known as weak formulation, of the fundamental piezoelectric

equations, both equilibrium equations (2.23) and charge conservation equation (2.24) must be added

and integrated over the volume in order to express the balance of the system’s energy. According to

Benjeddou [20], for an arbitrary admissible variation of displacement δui and an admissible variation of

electric potential δφ (i.e. both in line with the essential boundary conditions), equations (2.21) and (2.22)

are equivalent to: ∫
Ω

(
∂σij
∂xj

+ fi − ρ
∂2ui
∂t2

)
δui +

∂Di

∂xi
δφ dΩ = 0 (2.25)

The weak formulation for the piezoelectric differential equations (2.23) and (2.24) is fully derived

in the Appendix B, using equation (2.25). Briefly, the integration by parts method and the divergence

theorem must be used to highlight the stress boundary conditions on the imposed stress surface St and

also the charge boundary conditions imposed on the surface SQ. Further, the symmetric property of

the stress tensor must be used, along with the piezoelectric constitutive equations (2.8). To express the

variational formulation in terms of displacements and electric potential, the linear strain tensor definition

in equation (2.2) must be applied, along with the electric field-potential relation (2.6). Following this, one

obtains the piezoelectric variational principle as,

0 =

∫
Ω

−Cijklεklδεij + eijkEkδεij + ejkiεjkδEi + εijEjδEi + fiδui − ρ
∂2ui
∂t2

δui dΩ

+

∫
St

tsi δuidA+

∫
SQ

Qsδφ dA

(2.26)

where the natural boundary conditions are tsi = σijnj , the prescribed surface traction in St, and Qs =

Dini, the imposed surface charge (including the minus sign) in SQ, knowing that ni are the surfaces

outward unit normal vector components.

This approach can also be used in order to extended the Hamilton’s principle (2.27), and to define

the kinetic energy T , the electromechanical energy U and the work done by the external forces and

charges W . The Hamilton’s principle concerns the integral of action between two time steps t1 and t2

14



and is written in terms of the Lagrangian function L = T − V as,

δ

∫ t2

t1

Ldt = δ

∫ t2

t1

T − V dt = 0 (2.27)

where V = U + W is the total potential energy and δ, the variational operator. According to Benjeddou

[20], the kinetic energy T , the electromechanical energy U and the external work W are given by:

T =
1

2

∫
Ω

ρu̇iu̇i dΩ (2.28)

U =
1

2

∫
Ω

(σijεij −DiEi) dΩ (2.29)

W =

∫
Ω

fiuidΩ +

∫
St

tsiuidSt +

∫
SQ

QsdSQ (2.30)

At this moment, one could think of an analogy between the primary and secondary variables of the

mechanical and electrical domains as presented in table 2.1, along with the associated S.I. units.

Table 2.1: Mechanical and electrical variables: analogy and S.I. units
Mechanical Electrical

Displacement: u (m) Electric potential: φ (V)
Strain: ε (-) Electric Field: E (V/m)
Stress: σ (Pa) Electric Displacement: D (C/m2)
Concentrated Force: f (N) Concentrated Charge: Q (C)

2.3 Piezoelectric Multilayered Composite Plates Modelling
Concerning the modelling and analysis of piezoelectric multilayered composite plates, axiomatic the-

ories based on generalized displacements, typically shear deformation theories, are the most simple and

intuitive approach to modelling the kinematics of these types of adaptive smart structures. In this scope,

and considering the case of arbitrary piezoelectric layers, ESL and discrete LW theories represent the

possible choices for the description of the displacements and the electric potential. Even when consid-

ering only piezoelectric face layers, i.e., in the absence of embedded sensors or actuators, the exact

solutions exhibit a zig-zag through-thickness continuous evolution for the primary variables between the

multilayered composite core and the piezoelectric face layers, schematically represented in figure 2.2.

Consequently, discrete LW classical theories, which a priori satisfy the C0
z -requirements for the dis-

placements and electric potential, should be more accurate for the analysis of piezoelectric composite

plates than ESL theories. Moreover, since in LW models each layer is treated individually, the num-

ber of unknown variables depends on the number of layers in the stacking scheme, pushing forward

in complexity comparatively to ESL models, where the unknown variables are introduced for the whole

plate.

In order to keep a discrete LW model for piezoelectric composite plates the most simple possible, one

could consider the case where only piezoelectric face layers are present, bounding the top and bottom

surfaces of a multilayered composite core, which is described using the ESL theory. By doing this,
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Figure 2.2: Equivalent Single Layer theory vs. Layerwise theory.

only three discrete layers are considered, bottom (b), core (c) and top (t) layers (figure 2.4), avoiding

a generalized LW description of an arbitrary number of layers, while keeping a low number of unknown

variables, as well as a reasonably accurate kinematic description.

Further, for each k-discrete layer, with k = {b, c, t}, following Reddy’s book [17], the displacement

field (u(k), u(k), w(k)) could take the axiomatic description of the classical theory (CLPT), present in

equation (2.31), or alternatively the first-order theory (FSDT) displacement field in equation (2.32), or

even for a more accurate description, an higher-order theory (HSDT), represented in equation (2.33),

could be used (see figure 2.3). Other refined theories can be found in the literature, as can be seen in the

review by Li [22] or in the modified-HSDT reported by Mantari and Guedes Soares [32]. Independently

of the chosen axiomatic theory, the LW model for three discrete layers must account for the interlaminar

C0
z -requirements for the displacement field, as well as for the electric potential. Hence, the compatibility

conditions must be established at the layer’s interfaces (bottom-core and core-top) in order to a priori

fulfill the through-thickness continuity conditions for the primary variables.

Figure 2.3: Undeformed and deformed configurations of a transverse normal according to the classical,
first-order and third-order plate theories, from Reddy [17].

Moreover, the displacement field associated to the classical theory (CLPT) in equation (2.31), doesn’t
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account for shear strains and is typically valid in thin structures, where the side-to-thickness ratios, a/h

and b/h, are higher then 100. Also, the classic theory is based on the Kirchhoff hypothesis, namely:

1. Straight lines orthogonal to the mid-surface, i.e, transverse normals, before deformation remain

straight after deformation.

2. The transverse normals are inextensible.

3. The transverse normals rotate in a way that they remain orthogonal to the mid-surface after defor-

mation.

From the first two hypothesis, the plate’s thickness remains unchanged, hence the transverse nor-

mal strains εzz are null, leading to a constant through-thickness transverse displacement. The third

hypothesis is the one that implies null transverse shear strains, γxz and γyz, providing a theory without

transverse shear deformation mechanisms.

For an arbitrary k-layer within a multilayered plate, the Kirchhoff hypothesis holds the CLPT displace-

ment field as follows,

u(k)(x, y, zk, t) = u
(k)
0 (x, y, t)− zk

∂w
(k)
0

∂x
(x, y, t)

v(k)(x, y, zk, t) = v
(k)
0 (x, y, t)− zk

∂w
(k)
0

∂y
(x, y, t)

w(k)(x, y, zk, t) = w
(k)
0 (x, y, t)

(2.31)

where the generalized displacements (u
(k)
0 , v

(k)
0 , w

(k)
0 ) are the cartesian displacement components for

the k-layer’s mid-plane (zk = 0), being zk the layer’s transverse coordinate, as can be seen in figure 2.4.

In order to introduce shear effects, the Kirchhoff’s third hypothesis could be relaxed, eliminating the

orthogonality condition. Improving the accuracy of the classical theory for moderately thick laminates

(a/h > 20), the first-order shear deformation theory (FSDT) is formulated by introducing the unknown

rotations of the normals to the mid-plane of the k-layer as shown in figure 2.3. Geometrically, one could

obtain the FSDT displacement field as follows,

u(k)(x, y, zk, t) = u
(k)
0 (x, y, t) + zkθ

(k)
x (x, y, t)

v(k)(x, y, zk, t) = v
(k)
0 (x, y, t) + zkθ

(k)
y (x, y, t)

w(k)(x, y, zk, t) = w
(k)
0 (x, y, t)

(2.32)

where the linear z-expansion coefficients of the in-plane displacements are θ(k)
x and θ(k)

y , the rotations

about the y-axes (anticlockwise) and x-axes (clockwise), respectively. Consequently, the in-plane strains

(ε
(k)
xx , ε

(k)
yy , γ

(k)
xy ) are through-thickness linear, while fictitious constant transverse shear strains (γ

(k)
yz , γ

(k)
xz )

are assumed.

From this gross hypothesis, a shear correction factor Ks must be taken into account for the conse-

quent discrepancy between the real transverse shear stress state and the constant one, predicted by

the first-order theory. Also, Ks minimizes the difference from the FSDT shear strain energy and the

exact three-dimensional one. Such determination is a complex task since for an arbitrary multilayered

17



composite plate, the shear correction factor depends on the stacking sequence, geometric parameters,

material properties as well as on the loading and boundary conditions.

A better kinematic description might be achieved using higher-order theories (HSDT), namely for

thick plates (a/h < 10), where higher-order z-expansions for the in-plane displacements are used. In

this scope, the third-order shear deformation theories (TSDT) are achieved by relaxing the straightness

and orthogonality of the first two Kirchhoff hypothesis for the transverse normals accomplished by a

cubic expansion of the in-plane displacements as follows,

u(k)(x, y, zk, t) = u
(k)
0 (x, y, t) + zkθ

(k)
x (x, y, t) + z2

kχ
(k)
x (x, y, t) + z3

kλ
(k)
x (x, y, t)

v(k)(x, y, zk, t) = v
(k)
0 (x, y, t) + zkθ

(k)
y (x, y, t) + z2

kχ
(k)
y (x, y, t) + z3

kλ
(k)
y (x, y, t)

w(k)(x, y, zk, t) = w
(k)
0 (x, y, t)

(2.33)

where the additional generalized displacements (χ
(k)
x , χ

(k)
y ) and (λ

(k)
x , λ

(k)
y ) are difficult to interpret geo-

metrically. The displacement field in equation (2.33) provides a through-thickness cubic variation of the

in-plane strains and stresses, while the correspondent transverse shear terms have a quadratic evolu-

tion. Hence, HSDT models do not require shear corrections factors, yielding a more accurate distribution

for the transverse shear stresses, in consequence of a more complex theory with greater computational

needs.

A further reduction on the number of unknowns is achieved using an ESL description in which the

TSDT displacement field is a priori forced to have vanishing transverse shear stresses on both top and

bottom surfaces of the multilayered plate, leading to the so-called Reddy’s TSDT [17].

Similarly to the displacement field, the electric potential could also be described using an axiomatic

theory. The most simple case is a linear z-expansion, however and according to Benjeddou [20], this as-

sumption systematically neglects the induced potential, leading to a partial electromechanical coupling,

which is thought to be improved using a quadratic variation.

Expanding the electric potential in a Taylor series on the z-direction, the first order coefficient will be

the symmetric of the transverse electric field, i.e, ∂φ/∂z = −Ez. The same happens if one expands the

transverse displacement w, where the transverse normal strain εzz = ∂w/∂z is the first order coefficient.

This type of unknowns, i.e., derivatives of primary variables, can only be used with Reissner’s mixed

formulations, as explained by Carrera [21].

In order to use an electric potential z-expansion based formulation, one could use the electric poten-

tial at various z-coordinates along the layer’s thickness direction, such as the top surface potential φsup

and the bottom one φinf for a linear z-expansion, or adding the mid-plane’s potential φmid for a quadratic

z-expansion, according to Polit et al. [30].

Hence, let h(k) be the thickness of an arbitrary k-layer in figure 2.4. One could obtain the linear

z-expansion for the layer’s electric potential φ(k), in terms of the local transverse coordinate zk as,

φ(k)(x, y, zk, t) =
1

2

(
φ(k)
sup(x, y, t) + φ

(k)
inf (x, y, t)

)
+

zk
h(k)

(
φ(k)
sup(x, y, t)− φ

(k)
inf (x, y, t)

)
(2.34)

where the consequent transverse electric field is independent on the transverse coordinate.
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On the other hand, the quadratic z-expansion for the electric potential leads to a through-thickness

linear transverse electric field, which is a more generalized and accurate assumption than the previous

one. In compact notation, the second-order z-expansion of the electric potential is

φ(k)(x, y, zk, t) = g(k)
s (zk)φ(k)

sup(x, y, t) + g
(k)
i (zk)φ

(k)
inf (x, y, t) + g(k)

m (zk)φ
(k)
mid(x, y, t) (2.35)

being the transverse coordinate functions gs(zk), gi(zk) and gm(zk) the one-dimensional quadratic La-

grange’s functions, which for the present formulation are given by:

g(k)
s (zk) = 2

(
zk
h(k)

)2

+
zk
h(k)

(2.36a)

g
(k)
i (zk) = 2

(
zk
h(k)

)2

− zk
h(k)

(2.36b)

g(k)
m (zk) = 1− 4

(
zk
h(k)

)2

(2.36c)

The local transverse coordinate zk is related to the global one z through the following translation:

zk = z − z̄k (2.37)

where z̄k is the transverse coordinate of the k-layer’s mid-plane in the global coordinate system.

h x, y

z

k = b

k = c

k = t

zk

x, y

h(k)

zinf(k)

zsup(k)

Figure 2.4: Generic k-layer coordinate system (x, y, zk).
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Chapter 3

Layerwise Model

In the following chapter, a discrete LW model for three discrete layers is formulated for analysis of

piezoelectric multilayered composite plates, with a displacement field based on FSDT assumptions,

combined with linear or quadratic z-expansions for the electric potential in each layer. The assumed

stacking sequence is made of piezoelectric face layers bounding a multilayered composite core, which

is treated as an equivalent single layer. The interlaminar continuity conditions at the interfaces between

the discrete layers are employed to formulate a displacement field and electric potential that fulfill the

C0
z -requirements.

3.1 Layerwise Displacement Field

The layerwise displacement field is developed for a model with three discrete layers, driven by the

assumption of a multilayered composite plate with piezoelectric face layers (figure 3.1), where no slip

occurs at the interfaces between layers. The composite core (c), as well as the piezoelectric top (t) and

bottom (b) layers, are modelled using the displacement field of the first-order theory in equation (2.32).

b

a

x

y

z

z̄t

z̄b

hb

ht

hc x

z

Figure 3.1: Piezoelectric composite plate and geometric parameters.

Following the assumed stacking sequence of discrete layers and the geometric parameters repre-
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sented in figure 3.1, the FSDT displacement field for the multilayered composite core is given by,

uc(x, y, z, t) = u0c(x, y, t) + zθxc(x, y, t)

vc(x, y, z, t) = v0c(x, y, t) + zθyc(x, y, t)

wc(x, y, z, t) = w0c(x, y, t)

(3.1)

likewise for the piezoelectric top layer as,

ut(x, y, z, t) = u0t(x, y, t) + (z − z̄t)θxt(x, y, t)

vt(x, y, z, t) = v0t(x, y, t) + (z − z̄t)θyt(x, y, t)

wt(x, y, z, t) = w0t(x, y, t)

(3.2)

and for the piezoelectric bottom layer as,

ub(x, y, z, t) = u0b(x, y, t) + (z − z̄b)θxb(x, y, t)

vb(x, y, z, t) = v0b(x, y, t) + (z − z̄b)θyb(x, y, t)

wb(x, y, z, t) = w0b(x, y, t)

(3.3)

where z̄t and z̄b are the mid-plane transverse coordinates for both top and bottom layers with respect to

the plate’s mid-plane, respectively, defined as follows:

z̄t =
hc
2

+
ht
2
, z̄b = −hc

2
− hb

2
(3.4)

In order to fulfill the C0
z -requirements for the displacements along the layer’s interfaces, the interlam-

inar continuity conditions must be verified for all displacement components. Since the FSDT transverse

displacement is assumed to be independent on the z-coordinate, the interlaminar continuity conditions

for the transverse displacement leads to,

wc(x, y, z, t) = wt(x, y, z, t) = wb(x, y, z, t) = w0(x, y, t) (3.5)

where w0 represents the plate’s mid-plane (z = 0) transverse displacement.

The continuity conditions for the in-plane displacements at the interfaces between the piezoelectric

face layers and the composite core as follows,

uc

(
x, y,

hc
2
, t

)
= ut

(
x, y, z̄t −

ht
2
, t

)
(3.6a)

vc

(
x, y,

hc
2
, t

)
= vt

(
x, y, z̄t −

ht
2
, t

)
(3.6b)

uc

(
x, y,−hc

2
, t

)
= ub

(
x, y, z̄b +

hb
2
, t

)
(3.6c)

vc

(
x, y,−hc

2
, t

)
= vb

(
x, y, z̄b +

hb
2
, t

)
(3.6d)
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allow to reduce the number of unknowns (generalized displacements) in the model by writing the rota-

tions of both bottom and top layers, (θxb , θyb) and (θxt , θyt), respectively, as a function of the remaining

unknowns.

Solving the continuity conditions (3.6) for the displacements defined in equations (3.1), (3.2) and

(3.3), one obtains,

θxt = − 2

ht
u0c −

hc
ht
θxc +

2

ht
u0t (3.7a)

θyt = − 2

ht
v0c −

hc
ht
θyc +

2

ht
v0t (3.7b)

θxb =
2

hb
u0c −

hc
hb
θxc −

2

hb
u0b (3.7c)

θyb =
2

hb
v0c −

hc
hb
θyc −

2

hb
v0b (3.7d)

and defining the layerwise-constants αk and βk, with k = {1, 2, 3} as,
α1

α2

α3

 =
1

ht


−2

−hc
2

 ,


β1

β2

β3

 =
1

hb


2

−hc
−2

 (3.8)

the rotations in equation (3.7) can be written as shown:

θxt = α1u0c + α2θxc + α3u0t (3.9a)

θyt = α1v0c + α2θyc + α3v0t (3.9b)

θxb = β1u0c + β2θxc + β3u0b (3.9c)

θyb = β1v0c + β2θyc + β3v0b (3.9d)

Replacing the rotations in equation (3.7), for the top and bottom layers, in the respective displacement

field in equations (3.2) and (3.3), respectively, one obtains the LW-FSDT in-plane displacements for the

piezoelectric face layers as follows:

ut =

[
1 +

2(z − z̄t)
ht

]
u0t −

2(z − z̄t)
ht

u0c −
hc
ht

(z − z̄t)θxc (3.10a)

vt =

[
1 +

2(z − z̄t)
ht

]
v0t −

2(z − z̄t)
ht

v0c −
hc
ht

(z − z̄t)θyc (3.10b)

ub =

[
1− 2(z − z̄b)

hb

]
u0b +

2(z − z̄b)
hb

u0c −
hc
hb

(z − z̄b)θxc (3.10c)

vb =

[
1− 2(z − z̄b)

hb

]
v0c +

2(z − z̄b)
hb

v0c −
hc
hb

(z − z̄b)θyc (3.10d)

The transverse displacements of the three discrete layers are given in equation (3.5).

The relation between the displacement components for each k-discrete layer, for k = {c, t, b}, and

the nine independent unknown mechanical variables, ordained in the vector of mechanical degrees of
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freedom {d} defined as,

{d} = {u0c v0c w0 θxc θyc u0t v0t u0b v0b}
T (3.11)

is achieved through a matrix [Z](k) which establishes,

{u}(k) = {u(k) v(k) w(k)}T = [Z](k){d} (3.12)

where the [Z](k) matrices, for the composite core, are derived from equation (3.1) in order to verify

equation (3.12), leading to,

[Z]c =


1 0 0 z 0 0 0 0 0

0 1 0 0 z 0 0 0 0

0 0 1 0 0 0 0 0 0

 (3.13)

while for the top and bottom layers, one could use the layerwise constants defined in equation (3.8), as

well as the modified displacements in equation (3.10) to derive:

[Z]t =


α1(z − z̄t) 0 0 α2(z − z̄t) 0 [1 + α3(z − z̄t)] 0 0 0

0 α1(z − z̄t) 0 0 α2(z − z̄t) 0 [1 + α3(z − z̄t)] 0 0

0 0 1 0 0 0 0 0 0


(3.14)

[Z]b =


β1(z − z̄b) 0 0 β2(z − z̄b) 0 0 0 [1 + β3(z − z̄b)] 0

0 β1(z − z̄b) 0 0 β2(z − z̄b) 0 0 0 [1 + β3(z − z̄b)]

0 0 1 0 0 0 0 0 0


(3.15)

3.2 Layerwise Strain Field

From the infinitesimal strain tensor definition in equation (2.2), the nonzero linear strains associated

with the assumed FSDT displacement field for an arbitrary k-layer in equation (2.32) are written in the

global transverse coordinate z as shown,

ε(k)
xx =

∂u
(k)
0

∂x
+ (z − z̄k)

∂θ
(k)
x

∂x

ε(k)
yy =

∂v
(k)
0

∂y
+ (z − z̄k)

∂θ
(k)
y

∂y

γ(k)
xy =

∂u
(k)
0

∂y
+
∂v

(k)
0

∂x
+ (z − z̄k)

(
∂θ

(k)
x

∂y
+
∂θ

(k)
y

∂x

)

γ(k)
xz = θ(k)

x +
∂w0

∂x

γ(k)
yz = θ(k)

y +
∂w0

∂y

(3.16)

where z̄k is the transverse coordinate of the k-layer’s mid-plane in the global coordinate system. Con-

sequently, from the displacement field for the multilayered core in equation (3.1), one can obtain the
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nonzero strains as follows:
εcxx =

∂u0c

∂x
+ z

∂θxc
∂x

εcyy =
∂v0c

∂y
+ z

∂θyc
∂y

γcxy =
∂u0c

∂y
+
∂v0c

∂x
+ z

(
∂θxc
∂y

+
∂θyc
∂x

)
γcxz = θcx +

∂w0

∂x

γcyz = θcy +
∂w0

∂y

(3.17)

For the piezoelectric face layers, the rotation dependent terms in equation (3.16) (bending strain

components) are expanded using the defined rotations in equation (3.9), as a function of the layerwise-

constants αi for the top layer and the βi ones for the bottom layer given in equation (3.8). Hence, the

LW strain field for the piezoelectric top layer is given by

εtxx =
∂u0t

∂x
+ (z − z̄t)

(
α1
∂u0c

∂x
+ α2

∂θxc
∂x

+ α3
∂u0t

∂x

)
εtyy =

∂v0t

∂y
+ (z − z̄t)

(
α1
∂v0c

∂y
+ α2

∂θyc
∂y

+ α3
∂v0t

∂y

)
γtxy =

∂u0t

∂y
+
∂v0t

∂x
+ (z − z̄t)

[
α1

(
∂v0c

∂x
+
∂u0c

∂y

)
+ α2

(
∂θyc
∂x

+
∂θxc
∂y

)
+ α3

(
∂v0t

∂x
+
∂u0t

∂y

)]
γtxz = α1u0c + α2θxc + α3u0t +

∂w0

∂x

γtyz = α1v0c + α2θyc + α3v0t +
∂w0

∂y

(3.18)

while for the bottom layer by

εbxx =
∂u0b

∂x
+ (z − z̄b)

(
β1
∂u0c

∂x
+ β2

∂θxc
∂x

+ β3
∂u0b

∂x

)
εbyy =

∂v0b

∂y
+ (z − z̄b)

(
β1
∂v0c

∂y
+ β2

∂θyc
∂y

+ β3
∂v0b

∂y

)
γbxy =

∂u0b

∂y
+
∂v0b

∂x
+ (z − z̄b)

[
β1

(
∂v0c

∂x
+
∂u0c

∂y

)
+ β2

(
∂θyc
∂x

+
∂θxc
∂y

)
+ β3

(
∂v0b

∂x
+
∂u0b

∂y

)]
γbxz = β1u0c + β2θxc + β3u0t +

∂w0

∂x

γbyz = β1v0c + β2θyc + β3v0t +
∂w0

∂y

(3.19)

where the mid-plane coordinates z̄t and z̄b are given in equation (3.4).

The strain components in equations (3.17), (3.18) and (3.19) can be divided in z-independent strains,

i.e., the generalized membrane strains {ε̂m}, while the z-dependent linear terms are the generalized

bending strains {ε̂b}. For the transverse shear strains, the generalized shear strains {ε̂s} for each

discrete layer coincide with the natural ones, in the previous equations. Explicitly, for an arbitrary k-

discrete layer, the generalized strain vector {ε̂}(k) is defined as shown,

{ε̂}(k) =
{
{ε̂m}T(k) {ε̂b}

T
(k) {ε̂s}

T
(k)

}T
(3.20)
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where the generalized strain components are:

{ε̂m}(k) =
{
∂u

(k)
0

∂x
∂v

(k)
0

∂y
∂u

(k)
0

∂y +
∂v

(k)
0

∂x

}T
(3.21a)

{ε̂b}(k) =

{
∂θ(k)x

∂x

∂θ(k)y

∂y

(
∂θ(k)x

∂y +
∂θ(k)y

∂x

)}T
(3.21b)

{ε̂s}(k) =
{
θ

(k)
y +

∂w
(k)
0

∂y θ
(k)
x +

∂w
(k)
0

∂x

}T
(3.21c)

The strain vector {ε}(k) for the k-discrete layer, following the Kelvin-Voigt notation (2.9), is computed

using the generalized strain vector {ε̂}(k) as,

{ε}(k) = [S](k) {ε̂}(k) (3.22)

where the strain transformation matrix [S](k) for the k-discrete layer, with k = {t, c, b}, is given by:

[S](k) =



1 0 0 (z − z̄k) 0 0 0 0

0 1 0 0 (z − z̄k) 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 (z − z̄k) 0 0


(3.23)

Noting that for the composite core (c) the respective mid-plane transverse coordinate z̄c is zero, while for

the top and bottom layers, z̄t and z̄b, are given in equation (3.4).

3.3 Layerwise Electric Potential

Attempting to obtain a LW description for the electric potential, one can use for each discrete layer,

the linear z-expansion in equation (2.34), or the quadratic one in equation (2.35), imposing equipotential

continuity conditions at the layer’s interfaces, in figure 3.1, as shown:

φc (x, y, z = hc/2, t) = φt (x, y, z = hc/2, t) (3.24a)

φc (x, y, z = −hc/2, t) = φb (x, y, z = −hc/2, t) (3.24b)

φ7

φ6

φ5

φ4

φ3

φ2

φ1

Figure 3.2: Electrical DOFs location in three discrete layers.
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Defining the surface electric potentials represented in figure 3.2 as follows,

φ1 (x, y, t) ≡ φ (x, y, z = −h/2, t) (3.25a)

φ2 (x, y, t) ≡ φ (x, y, z = −hc/2, t) (3.25b)

φ3 (x, y, t) ≡ φ (x, y, z = hc/2, t) (3.25c)

φ4 (x, y, t) ≡ φ (x, y, z = h/2, t) (3.25d)

where h is the total plate thickness, i.e, h = hb + hc + ht (see figure 3.1), one obtains the linear z-

expansion for the three discrete layers as:

φc(x, y, z, t) =
1

2
(φ3(x, y, t) + φ2(x, y, t)) +

z

hc
(φ3(x, y, t)− φ2(x, y, t)) (3.26a)

φt(x, y, z, t) =
1

2
(φ4(x, y, t) + φ3(x, y, t)) +

(z − z̄t)
ht

(φ4(x, y, t)− φ3(x, y, t)) (3.26b)

φb(x, y, z, t) =
1

2
(φ2(x, y, t) + φ1(x, y, t)) +

(z − z̄b)
hb

(φ2(x, y, t)− φ1(x, y, t)) (3.26c)

Furthermore, in order to define a quadratic z-expansion for the electric potential, the potentials in

the mid-planes must be introduced. Defining the electric potentials for the respective mid-planes of the

three discrete layers in figure 3.2 as follows,

φ5 (x, y, t) ≡ φ (x, y, z = z̄b, t) (3.27a)

φ6 (x, y, t) ≡ φ (x, y, z = 0, t) (3.27b)

φ7 (x, y, t) ≡ φ (x, y, z = z̄t, t) (3.27c)

one obtains the quadratic z-expansion for the three discrete layers as shown,

φc(x, y, z, t) = gcs(z)φ3(x, y, t) + gci (z)φ2(x, y, t) + gcm(z)φ6(x, y, t) (3.28a)

φt(x, y, z, t) = gts(z)φ4(x, y, t) + gti(z)φ3(x, y, t) + gtm(z)φ7(x, y, t) (3.28b)

φb(x, y, z, t) = gbs(z)φ2(x, y, t) + gbi (z)φ1(x, y, t) + gbm(z)φ5(x, y, t) (3.28c)

where the thickness coordinate functions are the one-dimensional quadratic Lagrange’s functions, given

in equation (2.36) for a generic layer, with zk = z − z̄k, for k = {b, c, t}.

The seven electric potential unknowns, for the quadratic z-expansion, are ordained in the electric

degrees of freedom vector {ϕ} as,

{ϕ} = {φ1 φ2 φ3 φ4 φ5 φ6 φ7}T (3.29)

while for the linear z-expansion, only the first four variables are used.
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3.4 Layerwise Electric Field

The LW electric field associated with both linear and quadratic z-expansions for the electric potential

is derived from the field-potential relation in equation (2.6). For an arbitrary k-layer, the linear electric

potential variation in equation (3.26), have the associated electric field components written in the global

transverse coordinate z as follows:

E(k)
x = −

∂φ(k)

∂x
=

1

2

(
−∂φ

(k)
sup

∂x
−
∂φ

(k)
inf

∂x

)
+

(z − z̄k)

h(k)

(
−∂φ

(k)
sup

∂x
+
∂φ

(k)
inf

∂x

)

E(k)
y = −

∂φ(k)

∂y
=

1

2

(
−∂φ

(k)
sup

∂y
−
∂φ

(k)
inf

∂y

)
+

(z − z̄k)

h(k)

(
−∂φ

(k)
sup

∂y
+
∂φ

(k)
inf

∂y

)

E(k)
z = −

∂φ(k)

∂z
=
φ

(k)
inf − φ

(k)
sup

h(k)

(3.30)

From the electric DOFs definitions, in equation (3.25), the electric field components within the com-

posite core holds,

Exc = −∂φc
∂x

=
1

2

(
−∂φ3

∂x
− ∂φ2

∂x

)
+

z

hc

(
−∂φ3

∂x
+
∂φ2

∂x

)
Eyc = −∂φc

∂y
=

1

2

(
−∂φ3

∂y
− ∂φ2

∂y

)
+

z

hc

(
−∂φ3

∂y
+
∂φ2

∂y

)
Ezc = −∂φc

∂z
=
φ2 − φ3

hc

(3.31)

while the electric field for the piezoelectric top layer becomes,

Ext = −∂φt
∂x

=
1

2

(
−∂φ4

∂x
− ∂φ3

∂x

)
+

(z − z̄t)
ht

(
−∂φ4

∂x
+
∂φ3

∂x

)
Eyt = −∂φt

∂y
=

1

2

(
−∂φ4

∂y
− ∂φ3

∂y

)
+

(z − z̄t)
ht

(
−∂φ4

∂y
+
∂φ3

∂y

)
Ezt = −∂φt

∂z
=
φ3 − φ4

ht

(3.32)

as well as for the piezoelectric bottom layer as follows,

Exb = −∂φb
∂x

=
1

2

(
−∂φ2

∂x
− ∂φ1

∂x

)
+

(z − z̄b)
hb

(
−∂φ2

∂x
+
∂φ1

∂x

)
Eyb = −∂φb

∂y
=

1

2

(
−∂φ2

∂y
− ∂φ1

∂y

)
+

(z − z̄b)
hb

(
−∂φ2

∂y
+
∂φ1

∂y

)
Ezb = −∂φb

∂z
=
φ1 − φ2

hb

(3.33)

where a linear through-thickness variation is achieved for the in-plane components and a constant one

for the transverse component.

Similarly to the generalized strain field, the k-discrete layer electric field vector {E}(k) can also be

decomposed in generalized electric field components {Ê}(k) following,

{E}(k) = [Sφ](k){Ê}(k) (3.34)
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where the generalized electric field components for the linear z-expansion of the electric potential are

defined by:

{Ê}(k) =

{
−∂φ

(k)
sup

∂x − ∂φ
(k)
inf

∂x ,−∂φ
(k)
sup

∂y − ∂φ
(k)
inf

∂y ,−∂φ
(k)
sup

∂x +
∂φ

(k)
inf

∂x ,−∂φ
(k)
sup

∂y +
∂φ

(k)
inf

∂y , φ
(k)
inf − φ

(k)
sup

}T
(3.35)

Hence, one obtains the electric field transformation matrix [Sφ](k), for k = {b, c, t}, as follows:

[Sφ](k) =


1/2 0 (z − z̄k) /h(k) 0 0

0 1/2 0 (z − z̄k) /h(k) 0

0 0 0 0 1/h(k)

 (3.36)

From the quadratic z-expansion of the electric potential in equation (3.28), the associated electric

field for the k-discrete layer holds,

E(k)
x = −

∂φ(k)

∂x
= −g(k)

s (z)
∂φ

(k)
sup

∂x
− g(k)

i (z)
∂φ

(k)
inf

∂x
− g(k)

m (z)
∂φ

(k)
mid

∂x

E(k)
y = −

∂φ(k)

∂y
= −g(k)

s (z)
∂φ

(k)
sup

∂y
− g(k)

i (z)
∂φ

(k)
inf

∂y
− g(k)

m (z)
∂φ

(k)
mid

∂y

E(k)
z = −

∂φ(k)

∂z
= −dg

(k)
s

dz
φ(k)
sup −

dg
(k)
i

dz
φ

(k)
inf −

dg
(k)
m

dz
φ

(k)
mid

(3.37)

where the in-plane components are through-thickness quadratic and the transverse one is through-

thickness linear, due to the quadratic Lagrange’s functions in equation (2.36).

For the bottom layer, k = b, the potentials
(
φ

(b)
inf , φ

(b)
sup, φ

(b)
mid

)
are equivalent to the aforementioned

potentials (φ1, φ2, φ5) in equations (3.25) and (3.27). Likewise, for the composite core, k = c, where(
φ

(c)
inf , φ

(c)
sup, φ

(c)
mid

)
≡ (φ2, φ3, φ6), while for the top layer, k = t, being

(
φ

(t
inf , φ

(t)
sup, φ

(t)
mid

)
≡ (φ3, φ4, φ7).

In order to satisfy the generalized electric field transformation in equation (3.34), one could define

the new generalized electric field components for the quadratic potential as

{Ê}(k) = −

{
∂φ

(k)
sup

∂x
,
∂φ

(k)
inf

∂x
,
∂φ

(k)
mid

∂x
,
∂φ

(k)
sup

∂y
,
∂φ

(k)
inf

∂y
,
∂φ

(k)
mid

∂y
, φ(k)
sup , φ

(k)
inf , φ

(k)
mid

}T
(3.38)

and from the electric field in equation (3.37), the consequent electric field transformation matrix [Sφ](k),

for k = {b, c, t}, are given by:

[Sφ](k) =


g

(k)
s (z) g

(k)
i (z) g

(k)
m (z) 0 0 0 0 0 0

0 0 0 g
(k)
s (z) g

(k)
i (z) g

(k)
m (z) 0 0 0

0 0 0 0 0 0 dg
(k)
s /dz dg

(k)
i /dz dg

(k)
m /dz


(3.39)
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3.5 Multilayered Generalized Constitutive Equations
The piezoelectric multilayered constitutive equations relate the force and moment resultants, per unit

length, to the strains and electric field of a piezoelectric laminated plate. The in-plane force resultants

(Nxx, Nyy, Nxy) and the moment resultants (Mxx,Myy,Mxy) are derived from the thickness integration

of the in-plane stresses as follows,
Nxx

Nyy

Nxy

 =

∫ h
2

−h2


σxx

σyy

τxy

 dz,


Mxx

Myy

Mxy

 =

∫ h
2

−h2


σxx

σyy

τxy

 z dz (3.40)

while the transverse force resultants (Qx, Qy) are related to the transverse shear stresses through

QyQx
 = Ks

∫ h
2

−h2

τyzτxz
 dz (3.41)

where Ks is the shear correction factor used to account for the discrepancy between the real transverse

shear stress state and the constant one assumed by the FSDT. In a first approximation, Birman et al.

[39] suggest a unitary Ks for multilayered sandwich structures, which is the default value used in the

present model.

Due to different material properties in each layer and consequent discontinuous stress fields, the

thickness integration is carried out using a lamina-wise integration in the layer’s local transverse coordi-

nate. Following the generalized fields defined in equations (3.22) and (3.34), the stress resultants vector

for the k-layer {σ̂}(k), as well as the electric displacement resultants {D̂}(k) are given by:

{σ̂}(k) =

∫ zsup
(k)

zinf
(k)

[S]
T
(k) {σ}(k) dzk, {D̂}(k) =

∫ zsup
(k)

zinf
(k)

[Sφ]
T
(k) {D}(k) dzk (3.42)

where zk is the local transverse coordinate, i.e., zk = z − z̄k which varies from the bottom zinf(k) =

−h(k)/2 to the top zsup(k) = h(k)/2. Introducing the piezoelectric constitutive equations (2.18), and then

the generalized fields definitions in equations (3.22) and (3.34), in equation (3.42), one obtains the

generalized constitutive equations as follows,

{σ̂}(k) = [Q̂](k) {ε̂}(k) − [ê](k){Ê}(k)

{D̂}(k) = [ê]T(k) {ε̂}(k) + [ε̂](k){Ê}(k)

(3.43)

where the generalized constitutive matrices are obtained following the integration along the layer’s thick-

ness direction as shown:

[Q̂](k) =

∫ zsup
(k)

zinf
(k)

[S]
T
(k)

[
Q̄
]
(k)

[S](k) dzk (3.44a)

[ê](k) =

∫ zsup
(k)

zinf
(k)

[S]
T
(k) [ē](k) [Sφ](k) dzk (3.44b)
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[ê]
T
(k) =

∫ zsup
(k)

zinf
(k)

[Sφ]
T
(k) [ē]

T
(k) [S](k) dzk (3.44c)

[ε̂](k) =

∫ zsup
(k)

zinf
(k)

[Sφ]
T
(k) [ε̄](k) [Sφ](k) dzk (3.44d)

The generalized constitutive matrices in equations (3.44) are explicitly presented in the Appendix D,

for the model with linear z-expansion of the electric potential.

For the whole multilayered plate, applying the additive property of the integral operator to equations

(3.40) and (3.41), the stress resultants are the sum of each layer’s contribution. Considering the present

discrete LW model with three-discrete layers, one obtains:

{σ̂} =
∑

k=c,t,b

{σ̂}(k) =
∑

k=c,t,b

[Q̂](k) {ε̂}(k) −
∑

k=c,t,b

[ê](k){Ê}(k) (3.45)

and

{D̂} =
∑

k=c,t,b

{D̂}(k) =
∑

k=c,t,b

[ê]T(k) {ε̂}(k) +
∑

k=c,t,b

[ε̂](k){Ê}(k) (3.46)

Noting that for the multilayered composite core (k = c), where an ESL approach is used, each one

of the generalized constitutive matrices in equations (3.44) are the sum of the respective generalized

constitutive matrices for each composite layer, integrated using a lamina-wise scheme as consequence

of the additive property of integral operator. In these layers, the transverse coordinate of the mid-plane

is null, i.e., z̄c = 0, for all layers in the composite core, since the multilayered composite core is treated

as an equivalent single layer.
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Chapter 4

Finite Element Formulation

In this chapter, the finite element approximation is used to describe and implement in a computational

way, the already presented discrete layerwise models for piezoelectric multilayered composite plates.

The finite element formulation is presented for a quadrilateral electro-elastic plate element, where the

element stiffness and mass matrices are derived for static and free-vibration analysis. Moreover, optimal

post-processing procedures are discussed and an improved method is presented for the determination

of transverse shear stresses.

4.1 Finite Element Approximation
The finite element approximation on the element domain Ωe, for both mechanical and electrical DOFs

in equations (3.11) and (3.29), respectively, is made using the same interpolation functions ψej . Briefly,

the finite element approximation takes the form,

w0(x, y, t) =

n∑
j=1

ψej (x, y)we0j (t)

φ1(x, y, t) =

n∑
j=1

ψej (x, y)φ1
e
j(t)

(4.1)

where n it’s the element number of nodes per element, while we0j and φ1
e
j are the transverse displace-

ment and electric potential at the jth-node of the e-element, respectively.

1 25

34

6

7

8
ξ

η

Figure 4.1: Eight node quadratic serendipity master element.

The finite element approximation is achieved using the quadratic serendipity eight node (n = 8)
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interpolation functions. In terms of the master element Ωe = {(ξ, η) ∈ R2 : −1 < ξ < 1, −1 < η < 1}, in

figure 4.1, the interpolation functions, according to Reddy [18], are given by:

ψe1

ψe2

ψe3

ψe4

ψe5

ψe6

ψe7

ψe8



=
1

4



(1− ξ)(1− η)(−ξ − η − 1)

(1 + ξ)(1− η)(ξ − η − 1)

(1 + ξ)(1 + η)(ξ + η − 1)

(1− ξ)(1 + η)(−ξ + η − 1)

2(1− ξ2)(1− η)

2(1 + ξ)(1− η2)

2(1− ξ2)(1 + η)

2(1− ξ)(1− η2)



(4.2)

A generic matrix form for the element mechanical DOFs vector can be achieved defining a matrix

[N ], containing the serendipity shape functions. The overall element DOFs, either mechanical {d}(e)

or electrical {ϕ}(e), can be expressed as a function of the nodal DOFs {d}(e)j and {ϕ}(e)j for all the n

j-nodes as shown,

{d}(e) = [N ] {a}(e), {a}(e) = {{d}(e)
T

1 ...{d}(e)
T

n }T (4.3)

and

{ϕ}(e) = [Nφ] {ϕ̄}(e), {ϕ̄}(e) = {{ϕ}(e)
T

1 ...{ϕ}(e)
T

n }T (4.4)

where the element shape functions matrices for the mechanical DOFs, [N ], and for the electrical ones,

[Nφ], are given by:

[N ] = [[Ψ]1 , [Ψ]2 , ..., [Ψ]n] (4.5)

and

[Nφ] =
[
[Ψφ]1 , [Ψφ]2 , ..., [Ψφ]n

]
(4.6)

with n = 8 for an element with eight nodes. Moreover, the diagonal matrices [Ψ]j and [Ψφ]j , with

j = {1, ..., 8}, are define as follows:

[Ψ]j = ψej [Ind ] [Ψφ]j = ψej
[
Inφ
]

(4.7)

where [Ind ], is the nd × nd identity matrix with nd = 9, i.e., the number of mechanical DOFs. Similarly,

[Inφ ] is also an nφ × nφ identity matrix, with nφ = 4 for the linear z-expansion of the electric potential or

nφ = 7 for the quadratic z-expansion.

Besides the displacement and electric potential DOFs, one could obtain the generalized strains in

equation (3.22), as well as the generalized electric field components in equation (3.34) from the finite

element approximation for the DOFs in equations (4.3) and (4.4). For each k-layer, with k = {t, c, b}, the

relation between the generalized strains and the nodal mechanic DOFs holds,

{ε̂}(k) = [B](k){a} (4.8)
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where [B](k) is the element generalized strain matrix for the k-layer, which in fact is the concatenation of

the n nodal generalized strain matrix as shown,

[B](k) =
[
[B](k)1

[B](k)2
... [B](k)n

]
(4.9)

with [B](k)j
the j-node generalized strain matrix for the k-layer and n = 8 nodes.

Similarly, for the same k-layer, the relation between the generalized electric field and the nodal elec-

tric DOFs holds,

{Ê}(k) = −[Bφ](k){ϕ̄} (4.10)

where [Bφ](k) is the element generalized electric field matrix for the k-layer, given by:

[Bφ](k) =
[
[Bφ](k)1

, [Bφ](k)2
, ..., [Bφ](k)n

]
(4.11)

with [Bφ](k)j
the j-node generalized electric field matrix for the k-layer and again n = 8 nodes.

Both nodal strain and nodal electric field matrices in equations (4.9) and (4.11) are explicitly pre-

sented in Appendix C for the three-discrete layers as a function of the interpolation functions (4.2) and

their derivatives, considering an arbitrary j-node.

4.2 Element Stiffness and Mass Matrices

The element stiffness and mass matrices establish the equilibrium equations through a system of

linear equations, at the element level, where the unknowns are the element DOFs and their second

derivatives with respect to the time. The Hamilton’s principle (2.27) is used to derive the governing

equations for static and free vibration analysis, knowing that for the k-discrete layer, which fills the

volume domain Ω(k), the kinetic energy in equation (2.28) and the electromechanical energy in equation

(2.29), can now be written using matrix notation as follows,

T(k) =
1

2

∫
Ω(k)

ρ(k){u̇}T(k){u̇}(k)dΩ(k) (4.12)

and

U(k) =
1

2

∫
Ω(k)

(
{ε}T(k){σ}(k) − {E}T(k){D}(k)

)
dΩ(k) (4.13)

while the external work in equation (2.30), in the absence of volume forces and surface charges reads,

W(k) =

∫
S(k)

{u}T(k) {fs}(k) dS(k) + {u}T(k) {fc}(k) (4.14)

knowing that {fs}(k) and {fc}(k) are the k-layer surface and concentrated forces, respectively.

The integral over the k-layer volume domain Ω(k) in equations (4.12) and (4.13), can be decomposed

into a surface integral in the k-layer surface S(k), following an integral in the transverse coordinate do-

main zk ∈
[
−h(k)/2, h(k)/2

]
. Hence, for the whole piezoelectric multilayered plate, the total kinetic and

33



potential energies will be the sum of all layer’s energies, specifically for the present model,

T =
∑

k=c,t,b

T(k) =
∑

k=c,t,b

1

2

∫
Ω(k)

ρ(k){u̇}T(k){u̇}(k)dΩ(k) (4.15)

and

U =
∑

k=c,t,b

U(k) =
∑

k=c,t,b

1

2

∫
Ω(k)

(
{ε}T(k){σ}(k) − {E}T(k){D}(k)

)
dΩ(k) (4.16)

The total kinetic energy in equation (4.15), can be rewritten using the displacement-DOFs relation,

equation (3.12), and the element shape function matrices in equation (4.3), leading to

T =
1

2

∑
k=c,t,b

∫
S(k)

ρ(k){ȧ}T [N ]
T

[P ](k) [N ] {ȧ} dS(k) (4.17)

where the [P ](k) matrix is given by:

[P ](k) =

∫ zsup
(k)

zinf
(k)

[Z]
T
(k) [Z](k) dzk (4.18)

Also, the total electromechanical energy in equation (4.16), can be related to the nodal DOFs using

the piezoelectric constitutive equations in (2.18), following the transformation to generalized strains and

electric field in equations (3.22) and (3.34), as well as the relation between the generalized strains and

electric field to the mechanical and electrical DOFs in equations (4.8) and (4.10), respectively. Hence,

one obtains:

U =
∑

k=c,t,b

1

2

∫
Ω(k)

(
{ε}T(k)[Q̄](k){ε}(k) − {ε}T(k) [ē](k) {E}(k) − {E}T(k) [ē]

T
(k) {ε}(k) − {E}T(k) [ε̄](k) {E}(k)

)
dΩ(k)

=
1

2

∑
k=c,t,b

∫
S(k)

{a}T [B]
T
(k) [Q̂](k) [B](k) {a} dS(k) +

∫
S(k)

{a}T [B]
T
(k) [ê](k) [Bφ](k) {ϕ̄} dS(k)

+

∫
S(k)

{ϕ̄}T [Bφ]
T
(k) [ê]

T
(k) [B](k) {a} dS(k) −

∫
S(k)

{ϕ̄}T [Bφ]
T
(k) [ε̂](k) [Bφ](k) {ϕ̄} dS(k)

(4.19)

where the generalized constitutive matrices [Q̂], [ê] and [ε̂] are given in (3.44).

Following the energy principle at stationary conditions and the variational principle in equation (2.26),

one obtains the element dynamic equilibrium equations for the piezoelectric multilayered plate as follows,

[Muu]
(e)

[0]

[0] [0]

{ä}{ ¨̄ϕ}


(e)

+

[Kuu]
(e)

[Kuφ]
(e)

[Kφu]
(e)

[Kφφ]
(e)

{a}{ϕ̄}


(e)

=

{Fu}{0}


(e)

(4.20)

where the mass sub-matrix [Muu](e) for the element is given by,

[Muu]
(e)

=
∑

k=c,t,b

∫
S(k)

ρ(k) [N ]
T

[P ](k) [N ] dS(k) (4.21)

while the stiffness sub-matrices, particularly, [Kuu](e) the elastic stiffness matrix, [Kuφ](e) = [Kφu](e)
T
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the electromechanical coupling stiffness matrices and [Kφφ](e) the dielectric stiffness matrix, are given

by:

[Kuu]
(e)

=
∑

k=c,t,b

∫
S(k)

[B]
(e)T

(k) [Q̂](k) [B]
(e)
(k) dS(k) (4.22a)

[Kuφ]
(e)

=
∑

k=c,t,b

∫
S(k)

[B]
(e)T

(k) [ê](k) [Bφ]
(e)
(k) dS(k) (4.22b)

[Kφu]
(e)

=
∑

k=c,t,b

∫
S(k)

[Bφ]
(e)T

(k) [ê]
T
(k) [B]

(e)
(k) dS(k) = [Kuφ]

(e)T (4.22c)

[Kφφ]
(e)

= −
∑

k=c,t,b

∫
S(k)

[Bφ]
(e)T

(k) [ε̂](k) [Bφ]
(e)
(k) dS(k) (4.22d)

From the external work, equation (4.14), one could obtain the mechanical force vector as shown:

{Fu}(e) =
∑

k=c,t,b

∫
S(k)

[N ] [Z]
T
(k) {fs}

(e)
(k) dS(k) + [N ] [Z]

T
(k) {fc}

(e)
(k) (4.23)

which computation is not required in the UEL subroutine because the loads are applied to a soft dummy

plate element available in Abaqus (S8R), attached to the UEL, being the computation of the force vector

fully performed by Abaqus. Moreover, for the case of transverse loads, the nonzero force components

are applied to the transverse displacement DOF, which is the same for all layers.

The system of equilibrium equations (4.20), after the usual assembly procedures performed by

Abaqus, leads to the overall system of equilibrium equations for the multilayered plate, which is solved

in static analysis by neglecting the inertial terms. In free vibration analysis, when imposing zero applied

forces, as well as an harmonic motion for the DOFs, the overall system of equations (4.20) leads to an

eigenvalue problem, where the eigenvalues are the square of the vibration frequencies, i.e., ω2
mn, and

the eigenvectors are the vibration modes.

4.3 Coordinate Transformation

Attempting to avoid the computation of complex and numerous integrals, the stiffness and mass

matrices are computed using numerical integration. Specifically, the useful Gauss-Legendre quadrature

is used attempting to obtain an exact approach to evaluate the integrals of the polynomial functions

provided by the quadratic interpolation functions.

In fact, both nodal strain and electric field matrices in equations (4.9) and (4.11), which are explicitly

presented in Appendix C for the three-discrete layers, are linearly dependent on the interpolation func-

tions in equation (4.2) and their derivatives.Therefore, a coordinate transformation between the global

coordinate system (x, y) and the natural one (ξ, η) must be used in order to simplify the integration over

a quadrilateral element Ωe by means of a master element Ω̂.

The coordinate transformation between Ωe and Ω̂ is by definition the mapping of any point (x, y) in
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Ωe of the mesh, to a point (ξ, η) in Ω̂ which is achieved by,

x =

m∑
j=1

xej ψ̂
e
j (ξ, η) , y =

m∑
j=1

yej ψ̂
e
j (ξ, η) (4.24)

where ψ̂ej (ξ, η) are the interpolation functions of the master element and m = n = 8 is the number of

nodes per element. These functions can differ from the element interpolation functions used to approxi-

mate the DOFs, although in this model the same quadratic serendipity interpolation functions, equation

(4.2), will be used for both DOFs and geometric approximations, which leads to an isoparametric finite

element, according to Reddy [17].

Using the chain rule, the derivatives of the interpolation functions with respect to the natural coordi-

nates can be written as shown,
∂ψej
∂ξ

=
∂ψej
∂x

∂x

∂ξ
+
∂ψej
∂y

∂y

∂ξ

∂ψej
∂η

=
∂ψej
∂x

∂x

∂η
+
∂ψej
∂y

∂y

∂η

(4.25)

or using the usual matrix form, the transformation Jacobian matrix [J ]e will appear as follows:


∂ψej
∂ξ
∂ψej
∂η

 =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

e
∂ψej
∂x
∂ψej
∂y

 = [J ]e


∂ψej
∂x
∂ψej
∂y

 (4.26)

Using the coordinated transformation in equation (4.24), one could obtain the e-element Jacobian

matrix given by:

[J ]e =

m∑
j=1

xj ∂ψ̂j∂ξ yj
∂ψ̂j
∂ξ

xj
∂ψ̂j
∂η yj

∂ψ̂j
∂η

 =

∂ψ̂1

∂ξ
∂ψ̂2

∂ξ ... ∂ψ̂m
∂ξ

∂ψ̂1

∂η
∂ψ̂2

∂η ... ∂ψ̂m
∂η



x1 y1

x2 y2

...
...

xm ym

 (4.27)

Since the physical model is built on the (x, y) coordinates, the derivatives of the interpolation func-

tions, with respect to x and y, are evaluated inverting equation (4.26) leading to,
∂ψej
∂x
∂ψej
∂y

 = [J ]−1


∂ψej
∂ξ
∂ψej
∂η

 = [J∗]


∂ψej
∂ξ
∂ψej
∂η

 (4.28)

where the entries of the inverse Jacobian matrix [J∗] are defined using the Jacobian matrix determinant

J = J11J22 − J12J21, following:

J∗11 =
J22

J
, J∗12 = −J12

J
, J∗22 =

J11

J
, J∗21 = −J21

J
(4.29)

Note that the Jacobian matrix [J ] must be nonsingular, in order to be invertible and should have

a positive determinant J . In fact, the Jacobian matrix determinant, it’s also the key to transform the

infinitesimal element of area dS = dxdy, in the element domain Ωe, to an infinitesimal element of area
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dξdη in the master element Ω̂, through dxdy = J dξdη, allowing the numerical integration via Gauss-

Legendre quadrature. Moreover, on the right hand-side of equation (4.28), the first derivatives of the

eight node serendipity shape function, with respect to the natural coordinates, are found in Reddy [18].

4.4 Gauss Numerical Integration

There are several numerical methods that intend to obtain an approximated solution for a certain

integral. According to Reddy [18], the Gauss quadrature over a rectangular master element Ω̂, for an

arbitrary scalar field F (ξ, η) yields,

∫
Ω̂

F (ξ, η)dξdη ≈
MG∑
i=1

NG∑
j=1

F (ξi, ηj)WiWj (4.30)

where MG and NG denote the number of Gauss points in the ξ and η-directions, respectively, the pair

(ξi, ηj) denote the Gauss points coordinates, while Wi and Wj represent the associated Gauss weights.

Since the interpolation functions have the same order in ξ and η, one has MG = NG, and a total of

NG×NG Gauss points are used. Also, the number of Gauss points can be chosen in order to obtain exact

solutions, knowing that a p-order polynomial function is exactly integrated when NG = int [(p+ 1)/2]

Gauss points, in both ξ and η-directions, are employed.

Observing the mass sub-matrix in equation (4.21), the associated [N ] matrices, defined in equation

(4.5), are the ones that contain the interpolation functions which needs to be integrated. Hence, one

could obtain that the polynomial of higher order that will appear in the mass matrix (4.21), is ψ2
j . Knowing

that the shape functions ψj in equation (4.2) are quadratic, then ψ2
j is a polynomial function with order

p = 4. Consequently, the number of Gauss points necessary to exactly integrate equation (4.21) is

NG = 3. Following equations (4.21) and (4.30), one obtains:

[Muu]
(e)

=
∑

k=c,t,b

∫ 1

−1

∫ 1

−1

ρ(k) [N ]
T

[P ](k) [N ]J dξdη

=
∑

k=c,t,b

 3∑
i=1

3∑
j=1

ρ(k) [N(ξi, ηj)]
T

[P ](k) [N(ξi, ηj)]J (ξi, ηj)WiWj

 (4.31)

Following the same procedure for the stiffness sub-matrices in equations (4.22), inspecting the the

generalized strain matrices [B](k)j , in Appendix C, one could obtain that for the elastic stiffness matrix

[Kuu](e), the higher order polynomial function in the membrane and bending terms have order p = 2,

leading to NG = 2 Gauss points. For the shear terms, the associated polynomial with higher order have

p = 4, witch gives NG = 3.

According to Reddy’s book [17], in order to avoid the shear locking phenomena, reduced integration

must be carried for the shear terms. Hence, only NG = 2 Gauss points are used to integrate the shear

terms of the stiffness sub-matrix [Kuu](e).

Consequently, the elastic stiffness sub-matrix in equation (4.30) can be exactly evaluated by means
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of the Gauss quadrature following:

[Kuu]
(e)

=
∑

k=c,t,b

∫ 1

−1

∫ 1

−1

[B]
T
(k) [Q̂](k) [B](k) J dξdη

=
∑

k=c,t,b

 2∑
i=1

2∑
j=1

[B(ξi, ηj)]
T
(k) [Q̂](k) [B(ξi, ηj)](k) J (ξi, ηj)WiWj

 (4.32)

Also, for the dielectric stiffness sub-matrix, [Kφφ]
(e), inspecting the electric field matrices [Bφ](k)j , in

Appendix C, the number of necessary Gauss points is NG = 3, leading to:

[Kφφ]
(e)

= −
∑

k=c,t,b

∫ 1

−1

∫ 1

−1

[Bφ]
T
(k) [ε̂](k) [Bφ](k) J dξdη

=
∑

k=c,t,b

 3∑
i=1

3∑
j=1

[Bφ(ξi, ηj)]
T
(k) [ε̂](k) [Bφ(ξi, ηj)](k) J (ξi, ηj)WiWj

 (4.33)

Finally, for the electromechanical coupling stiffness sub-matrix, [Kuφ]
(e), using the same argument

as before, NG = 3 Gauss points are used to evaluate the coupling matrix as shown:

[Kuφ]
(e)

=
∑

k=c,t,b

∫ 1

−1

∫ 1

−1

[B]
T
(k) [ê](k) [Bφ](k) J dξdη

=
∑

k=c,t,b

 3∑
i=1

3∑
j=1

[B(ξi, ηj)]
T
(k) [ê](k) [Bφ(ξi, ηj)](k) J (ξi, ηj)WiWj

 (4.34)

Since the stiffness matrix is symmetric for the overall system of equation (4.20), hence the electrome-

chanical coupling sub-matrix [Kφu]
(e) is computed by transposing [Kuφ]

(e), i.e., [Kφu]
(e)

= [Kuφ]
(e)T .

The Gauss points coordinates and associated weights are summarized in table 4.1, according to

Reddy’s book [18], for the 2× 2 and 3× 3 rules. For 2× 2 Gauss points, figure 4.4 show the locations of

the integration points in the coordinate system of the master element.

Table 4.1: Gauss points and weights.

NG ξi, ηi Wi, Wj

2 ±
√

3/3 1

3
0

±
√

3/5

8/9

5/9

ξ

η

ξ =
√

3/3ξ = −
√

3/3

η =
√

3/3

η = −
√

3/3

Figure 4.2: 2×2 Gauss points.
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4.5 Post-Processing
Once the nodal variables are obtained, the generalized strains for a certain (x, y) point are evaluated

from equation (4.8), while the generalized electric field components are obtained from equation (4.10).

Then in order to compute the strains and the electric field components, for a certain z-coordinate, the

associated transformation matrices [S](k), in equation (3.22), and [Sφ](k), in equation (3.34), must be

used. Once the strains and electric fields are determined, the stresses and electric displacements are

derived from the layer’s constitutive equations (2.15).

According to Barlow [40], the optimal points to compute the strains, and consequently the stresses,

coincide with the reduced integration points, i.e, the 2 × 2 Gauss points used in the present models,

represented in figure 4.2. Moreover, the same points are used to compute the electric field components

and associated electric displacements. Consequently, local smoothing methods explained in Hinton et

al. [41, 42] are used to directly extrapolate the secondary variables to the desired (x, y) location from

the values at the Barlow’s points.

Furthermore, and according to Reddy [17], since the present model assumes constant transverse

shear stresses, one way to possibly improve the determination of these stresses is based on the direct

integration of the equilibrium equations (2.21) in the transverse direction, for each k-layer as follows,

τ (k)
xz = −

∫ zsup
(k)

zinf
(k)

(
∂σ

(k)
xx

∂x
+
∂τ

(k)
xy

∂y

)
dzk + C

(k)
1 (x, y) (4.35a)

τ (k)
yz = −

∫ zsup
(k)

zinf
(k)

(
∂τ

(k)
xy

∂x
+
∂σ

(k)
yy

∂y

)
dzk + C

(k)
2 (x, y) (4.35b)

equipped with interlaminar continuity conditions at the interfaces between adjacent layers given by,

τ (k)
xz (x, y, zsup(k) ) = τ (k+1)

xz (x, y, zinf(k+1))

τ (k)
yz (x, y, zsup(k) ) = τ (k+1)

yz (x, y, zinf(k+1))
(4.36)

and vanishing transverse shear stresses at the bottom surface of the plate as shown,

τxz(x, y,−h/2) = τyz(x, y,−h/2) = 0 (4.37)

which yields null integration constants for the bottom surface, i.e., C(b)
1 = C

(b)
2 = 0 . The remaining

integration constants, C(k)
1 (x, y) and C(k)

2 (x, y) are determined by imposing a continuous stress field at

the layer’s interfaces in order to obtain a quadratic variation that fulfills the C0
z -requirements.

In order to evaluate the integrals in equation (4.35) as a function of the nodal DOFs, one could use the

constitutive equation (2.18) for the in-plane stresses and then recall the generalized strains and electric

fields definitions, (3.22) and (3.34), which can be related to the nodal variables through the equations

(4.8) and (4.10), respectively. Following this approach, second order derivatives of the shape functions

at the Barlow’s points will appear, and must be properly accounted for in the coordinate transformation.
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Chapter 5

Abaqus User-Element Implementation

In this chapter, the implementation of the developed LW electro-elastic plate elements, using the User-

Defined Element (UEL) subroutine available in Abaqus, is discussed. This tool allows the user to define

the element matrices needed for the desired finite element analysis, using Fortran programming lan-

guage linked with a specific Abaqus input file. The main definitions regarding the UEL subroutine and

its use are presented, as well as the several steps for the model implementation. Also, the input-file

description is presented, regarding the mesh generation, boundary conditions and analysis options.

5.1 UEL Subroutine
Abaqus UEL subroutine translates all the developed theories and definitions in Fortran program-

ming language. All element’s definitions presented in Chapters 3 and 4, needed to build the mass and

stiffness matrices must be included for the desired analysis, along with the associated post-processing

requests. Moreover, for user defined boundary conditions, DISP subroutine must be attached to the UEL

subroutine. The same happens for the user defined loads, where the DLOAD subroutine must be also

included.

The UEL subroutine is called by Abaqus for every element within a mesh defined in the input file.

According to the input file, Abaqus sends to the UEL block (figure 5.1) the nodal coordinates, and for

each element computes the mass and stiffness matrices that will be later assembled in order to obtain

the overall equilibrium equations. Also, Abaqus UEL subroutine takes advantage of some features avail-

able in Abaqus, such as the mesh generator, the assembly procedures, the specification of boundary

conditions and prescription of loads, as well as the visualization module. Furthermore, the UEL subrou-

tine avoids the user to program the element force vector in the subroutine, using a soft dummy element

attached the UEL in the input file.

After the assembly of all elements, Abaqus solves the desired problem taking into account boundary

conditions and loads as defined in the input file. Consequently, the solution vector containing the nodal

DOFs is generated as an output. After this, Abaqus recalls the UEL subroutine for each element, adding

the solution vector as an input to the UEL block, allowing post-processing procedures to be programmed

within the subroutine, for the points (x, y) of interest through ”IF” cycles. The results for each (x, y, z)
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coordinates of interest are written in a .log text file generated by Abaqus.

Generalized Constitutive Matrices:
[Q̂](k), [ê](k), [ε̂](k) for k = {t, c, b}

Jacobian: [J ]

Generalized Strain and Electric Field
Matrices: [B](k), [Bφ](k) for k = {t, c, b}

Stiffness and Mass Sub-matrices: [Kuu](k),
[Kuφ](k), [Kφφ](k), [Muu](k) for k = {t, c, b}

SVARS:
{ε}, {σ}, {E}, {D}

AMATRX
(Stiffness / Mass) AMATRX

RHS

COORDS

U

dU
DO loop on Gauss points

Figure 5.1: UEL Subroutine flow chart.

5.2 UEL Input and Output Variables
The input and output variables for the UEL subroutine are represented in figure 5.1, written in bold.

According to Abaqus Manual [35], the input variable COORDS is a 2×n matrix, where n is the number of

nodes per element, which contains the (x, y) coordinates of the element’s nodes. Also, U is the solution

vector that contains the values of the DOFs for each node at the end of the current time increment, while

dU is a vector containing the incremental DOFs values for each node in the previous time increment.

The output variable AMATRX stands for the element mass and stiffness matrices, depending on the

entries in the LFLAGS array, which is defined in the input file options. For each element, both mass

and stiffness matrices must be calculated in the subroutine and then returned to Abaqus, having N ×N

components, where N is equal to the number of degrees of freedom per node times the number of

nodes in the element, i.e., N = 13 × 8 = 104 for the linear z-expansion of the electric potential and

N = 16× 8 = 128 for the quadratic one.

For each k-discrete layer, with k = {t, c, b}, the generalized constitutive matrices in equation (3.44),

likewise the [P ](k) matrices in equation (4.18), must be previously computed in order to be implemented
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in a loop on the Gauss points, where the Jacobian matrix in equation (4.27) is employed to perform the

coordinate transformation needed to build the generalized strain and electric field matrices in equations

(4.8) and (4.10) necessary to numerically evaluate the mass and stiffness sub-matrices in equations

(4.31), (4.32), (4.33) and (4.34).

The RHS is the internal force vector for the element with sizeN , defined as the product of the stiffness

matrix AMATRX to the solution vector U. Furthermore, in figure 5.1, the SVARS is a vector which

contains the element state-dependent variables, such as stresses and electric displacements, and it can

also be considered as an output variable from the user’s point of view, since it is not passed to Abaqus.

The post-processing procedures explained in Section 4.5 are used, where strains, stresses, electric

fields and electric displacements are evaluated at the Gauss points for all z-coordinates of interest and

then direct local extrapolation is used, being the results included in the vector SVARS. Both RHS and

SVARS are only calculated for static analysis.

5.3 Input File
The input file is a typical text file with .inp extension. It contains the key to call the UEL subroutine,

by addressing the user-defined element to the desired mesh. In short, one could divide the input file in:

1. Nodes: definition of nodal coordinates and numbering.

2. User-element: declaration of the user element, defining the number of nodes, number of integration

points, as well as the DOFs vector according to Abaqus convention.

3. Mesh: element definition in terms of element type and specification of the mesh in terms of nodes,

where the UEL mesh is attached to an equal mesh of very soft S8R shell elements available in

Abaqus, in order to apply forces without programming the force vector and also to visualize the

in-plane variation of the displacements.

4. Assembly: assembling of all elements within a mesh and definition of node sets.

5. Analysis: specification of the type of analysis (static or frequency) and inherent options, such as

the number of eigenvalues to extract in a frequency analysis.

6. Boundary Conditions: prescription of the essential boundary conditions for the desired node sets.

7. Loading: prescription of loading conditions.

8. Output: definition of the output request, only used for the nodal displacements.

Moreover, in order to link the input file with the UEL subroutine, both files must be in the same

directory and the user must enter in the command window the following command:

abaqus job=input-file-name.inp user=UEL-subroutine-name.for
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Chapter 6

Static Analysis Results

In this chapter, results for static analysis of two simply-supported piezoelectric multilayered composite

plates, considering various aspect ratios, from thin to thicker plates, are presented. Both finite element

models with linear z-expansion for the electric potential (UEL1) and quadratic z-expansion (UEL2), de-

veloped in Chapter 4, are compared with exact solutions reported by Moleiro et al. [13], available for the

cases where the top surface of the plate is subjected to an applied bi-sinusoidal distributed transverse

load q(x, y) (monitoring mode) as follows,

q(x, y) = q0 sin
(mπx

a

)
sin
(nπy

b

)
(6.1)

and for the case where the same surface have instead of a load, an applied bi-sinusoidal electric potential

φ̂(x, y) (actuation mode) as shown:

φ̂(x, y) = φ0 sin
(mπx

a

)
sin
(nπy

b

)
(6.2)

In the applied load case both top and bottom surfaces of the multilayered plate are grounded, while

in the applied potential case, only the bottom surface is grounded. Also, on the simply-supported edges,

the plate is grounded for both test cases. For numerical applications, an unitary value for the number

of half-waves in the x and y-directions is considered, i.e., m = n = 1 in both equations (6.1) and (6.2),

likewise an unitary amplitude values, meaning that φ0 = 1 V and q0 = 1 N/m2 (upwards).

6.1 Problem Description
Two symmetric stacking schemes are considered as test cases in line with some numerical applica-

tions reported by Moleiro et al. [13], where a multilayered composite core made of three graphite-epoxy

unidirectional fiber reinforced layers is bonded with piezoelectric face layers as follows:

• Case 1: Transversely isotropic piezoceramic PZT-4 face layers [PZT-4/0◦ /90◦ /0◦ /PZT-4]

• Case 2: Orthotropic piezoelectric polymer PVDF face layers of 0◦ [PVDF/90◦ /0◦ /90◦ /PVDF]

The associated engineering constants, piezoelectric coefficients and relative dielectric constants are
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listed in table 6.1. Both multilayered plates are square plates (a = b), with total thickness h = 0.01

m. Each piezoelectric layer has h/10 of thickness, while the multilayered composite core has 8h/10

equal thickness composite layers. The side dimension a is determined by the plate’s aspect ratio a/h =

100, 20, 10 or 4.

Table 6.1: Material properties, Heyliger [9].
Properties Graphite-Epoxy PZT-4 PVDF
E1 (GPa) 132.28 81.3 237.0
E2 (GPa) 10.756 81.3 23.2
E3 (GPa) 10.756 64.5 10.5
G12 (GPa) 5.654 30.6 6.43
G13 (GPa) 5.654 25.6 4.40
G23 (GPa) 3.606 25.6 2.15
ν12 0.24 0.33 0.154
ν13 0.24 0.43 0.178
ν23 0.49 0.43 0.177
e15 (C/m2) 0 12.72 -0.01
e24 (C/m2) 0 12.72 -0.01
e31 (C/m2) 0 -5.20 -0.13
e32 (C/m2) 0 -5.20 -0.14
e33 (C/m2) 0 15.08 -0.28
ε11/ε0

∗ 3.5 1475 12.50
ε22/ε0

∗ 3.0 1475 11.98
ε33/ε0

∗ 3.0 1300 11.98
ρ (kg/m3) 1578 7600 1780

∗ε0 = 8.85× 10−12 F/m (vacuum dielectric constant)

From the point of view of the present layerwise FSDT model and following Reddy’s book [17], the

simply-supported boundary conditions on the plate edges, represented in figure 6.1, imply that for the

three discrete layers, with k = {t, c, b}, the following conditions:

u0(k)
= w0 = θx(k)

= 0 at y = 0, a (6.3a)

v0(k)
= w0 = θy(k) = 0 at x = 0, a (6.3b)

One should note that from the chosen mechanical DOFs vector (3.11), the only rotations considered as

independent unknowns are the composite core rotations θxc and θyc , which are the only ones that must

be constrained regarding equations (6.3).

The electric boundary conditions are applied on the electric potentials DOFs in equation (3.29). Also,

on the simply-supported edges, the plate is grounded across the thickness, which for the present model

requires that

φi = 0 at x = 0, a and y = 0, a (6.4)

with i = {1, 2, 3, 4} for UEL1, while i = {1, 2, ..., 7} for UEL2. Furthermore, in order to prescribe an

electric potential at the bottom surface of the plate, the DOF φ1 must be prescribed, as well as the DOF

φ4 for the top surface, on both UEL models.

The in-plane locations for the desired variables are chosen in order to correspond to its absolute
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Figure 6.1: Simply-supported square plate, grounded in the edges.

maximum. According to the exact solutions of Heyliger [2] and in Moleiro et al. [11], the variables w,

φ, σxx, σyy and Dz are given at the plate’s center (a/2, a/2), while u, τxz and Dx are determined for

(0, a/2), as well as v, τyz and Dy at (a/2, 0). The absolute maximum for τxy occurs at the corner (0, 0).

It should be enhanced that all results are given at the aforementioned in-plane locations, in S.I. units

according to table 2.1. Moreover, in the presentation of the predicted transverse shear stresses by the

developed models, the suffix (C) stands for constitutively derived stresses, while the suffix (E) stands for

the equilibrium derived ones. Noting that in UEL1 only constitutively derived stresses are considered,

where the suffix (C) is omitted for brevity.

6.2 Convergence Study
In order to choose an appropriate mesh for static analysis, a convergence study is conducted for

UEL2 concerning the piezoelectric composite plate of Case 1, with a/h = 20, under applied load. The

chosen primary variables for the convergence test are the transverse displacement w and the electric

potential φ, likewise the in-plane normal stress σxx, as a representative secondary variable.

Table 6.2: Convergence study for UEL2 in static analysis of Case 1, with a/h = 20, under applied load.
Mesh w(a/2, a/2, 0)× 1011 δw (%) φ(a/2, a/2, 2h/5)× 103 δφ (%) σxx(a/2, a/2, h/2) δσ (%)

6x6 70.8754 0.49 1.6452 1.61 132.292 4.16
10x10 70.8971 0.46 1.6349 0.98 129.711 2.13
20x20 70.8982 0.46 1.6249 0.36 128.621 1.27
30x30 70.9002 0.46 1.6139 0.32 126.877 0.10
Exact 71.2282 1.6191 127.010
δx (%) = (xUEL − xExact)× 100/xExact

The results from table 6.2 show that even for the coarse mesh with 6 × 6 elements, the results are

in good agreement with the exact solutions. Also, one can see a slower rate of convergence for the

electric potential comparatively to the transverse displacement, being the in-plane stress the variable

with slower rate of convergence, as expected.

In order to better predict the secondary variables such as the stresses or the electric displacements,

the most refined mesh with 30 × 30 elements is chosen for all static analysis, since the additional com-

putational effort to the 20 × 20 mesh is negligible when compared to the achieved level of accuracy for
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all variables. The same mesh is used for UEL1 due to a similar convergence behaviour of the solution

when using the UEL1 model instead of UEL2.

6.3 Case 1 - Transversely Isotropic Piezoelectric Layers
Static analysis results for simply-supported plates of Case 1, [PZT-4/0◦ /90◦ /0◦ /PZT-4], with applied

bi-sinusoidal load or potential, from thin to thicker plates.

6.3.1 Thin Plates
Concerning the analysis of thin plates with a/h = 100, the results obtained with UEL2, presented in

tables 6.3 and 6.5 for applied load, and in tables 6.4 and 6.6 for applied potential, show the through-

thickness evolution of some representative mechanical and electrical variables, considering for this, both

bottom and top transverse coordinates of each layer. Likewise, tables E.1 and E.2, in the Appendix E,

show the same variables obtained with UEL1 model.

Table 6.3: Results Case 1, with a/h = 100, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -6492.82 -6497.32 41457.67 0.00 0.00 3145.3 3149.9 0.00 2792.06
2/5 -5190.58 -5194.47 41459.50 40.60 40.19 2514.7 2518.4 3699.50 1143.69
2/5 -5190.58 -5194.47 41459.50 40.60 40.19 2211.5 2215.2 -3.95 -3.91
2/15 -1726.70 -1731.49 41461.97 40.60 40.18 735.8 738.4 -3.95 -3.91
2/15 -1726.70 -1731.49 41461.97 40.60 40.18 73.1 73.0 -3.39 -3.35
-2/15 1727.61 1731.49 41461.96 40.61 40.18 -72.6 -73.0 -3.39 -3.35
-2/15 1727.61 1731.49 41461.96 40.61 40.18 -735.9 -738.4 -3.95 -3.91
-2/5 5191.50 5194.47 41459.47 40.62 40.19 -2211.5 -2215.2 -3.95 -3.91
-2/5 5191.50 5194.47 41459.47 40.62 40.19 -2514.8 -2518.4 3698.84 1143.69
-1/2 6493.74 6497.32 41457.64 0.00 0.00 -3145.4 -3149.9 0.00 2792.06

UEL2 41478.06

Table 6.4: Results Case 1, with a/h = 100, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -2.949 -2.864 -1.203 1.0000 1.0000 -2.521 -2.489 -6.088 -6.097
2/5 -1.425 -1.438 -1.198 0.9998 0.9998 -2.836 -2.809 -6.087 -6.096
2/5 -1.425 -1.438 -1.198 0.9998 0.9998 0.615 0.607 -0.010 -0.010

2/15 -1.524 -1.524 -1.197 0.6665 0.6665 0.657 0.650 -0.006 -0.006
2/15 -1.524 -1.524 -1.197 0.6665 0.6665 0.072 0.072 -0.006 -0.006
-2/15 -1.624 -1.611 -1.196 0.3333 0.3333 0.077 0.076 -0.003 -0.003
-2/15 -1.624 -1.611 -1.196 0.3333 0.3333 0.700 0.693 -0.003 -0.003
-2/5 -1.726 -1.697 -1.194 0.0002 0.0002 0.743 0.736 0.000 0.000
-2/5 -1.726 -1.697 -1.194 0.0002 0.0002 -2.688 -2.660 -0.001 -0.001
-1/2 -1.763 -1.747 -1.190 0.0000 0.0000 -2.670 -2.641 0.000 0.000

UEL2 -1.205

For both applied load and applied potential test cases, the displacements and electric potential are in

agreement with the exact solutions, as well as the in-plane stresses and in-plane electric displacements.

However, for the applied load case, due to the FSDT assumption of constant transverse shear strains,

and recalling the constitutive equations (2.15), table 6.3 and table E.1 (in Appendix E), show that both
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Table 6.5: Transverse electric displacement and transverse shear stresses for Case 1, with a/h = 100,
under applied load.

z/h Dz × 1012 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 12.026 12.283 0.000 5.619 0.000 0.000 5.621 0.000
2/5 -0.030 -0.026 12.421 7.225 8.887 12.424 7.227 8.878
2/5 -0.030 -0.061 12.421 25.234 8.887 12.424 12.148 8.878
2/15 0.032 -0.031 25.795 25.234 21.226 14.676 12.148 10.145
2/15 0.032 -0.031 25.795 16.093 21.226 14.676 19.048 10.145
-2/15 0.093 0.031 25.796 16.093 21.226 14.676 19.048 10.145
-2/15 0.093 0.031 25.796 25.234 21.226 14.676 12.148 10.145
-2/5 0.155 0.092 12.422 25.234 8.887 12.425 12.148 8.918
-2/5 0.155 0.026 12.422 7.225 8.887 12.425 7.227 8.918
-1/2 -11.900 -12.283 0.000 5.619 0.000 0.000 5.621 0.000

Table 6.6: Transverse electric displacement and transverse shear stresses for Case 1, with a/h = 100,
under applied potential.

z/h Dz × 108 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 -0.370 -0.371 0.000 0.006 0.000 0.000 0.006 0.000
2/5 -0.332 -0.332 -0.007 -0.003 -0.003 -0.006 -0.003 -0.002
2/5 -0.332 -0.332 -0.007 0.000 -0.003 -0.006 0.000 -0.002

2/15 -0.332 -0.332 -0.001 0.000 0.002 -0.005 0.000 -0.002
2/15 -0.332 -0.332 -0.001 0.000 0.002 -0.005 0.000 -0.002
-2/15 -0.332 -0.332 0.000 0.000 0.002 0.005 0.000 0.007
-2/15 -0.332 -0.332 0.000 0.000 0.002 0.005 0.000 0.007
-2/5 -0.332 -0.332 0.007 0.000 0.008 0.006 0.000 0.008
-2/5 -0.332 -0.332 0.007 0.009 0.008 0.006 0.008 0.008
-1/2 -0.332 -0.332 0.000 -0.001 0.000 0.000 -0.001 0.000

UEL1 and UEL2 models are not capable to achieve the vanishing in-plane electric displacements for

both top and bottom surfaces of the plate shown by the exact solutions. However, from the results for the

applied potential case, shown in tables 6.4 and E.2, one can see that the in-plane electric displacements

are well predicted by both UEL models.

Also, for both cases, tables 6.5 and 6.6 demonstrate that, besides the fact that the transverse electric

displacement is constitutively derived, and consequently discontinuous, the results of the UEL2 follow

approximately the exact solutions for thin plates, which is a benefit of the linear z-expansion of the

transverse electric field of UEL2, over the constant one assumed in UEL1 (tables E.1 and E.2).

Furthermore, the constitutively derived transverse shear stresses, for both UEL models and loading

cases, have an interlaminar discontinuous behaviour, with non-zero transverse shear stresses at the

plate’s top and bottom surfaces. Hence, the equilibrium derived stresses seem to be the more precise,

accounting to the C0
z -requirements and stress free boundary conditions.

6.3.2 Moderately Thick Plates

For moderately thick plates with a/h = 20, tables 6.7, 6.9 and 6.11 show both UEL1 and UEL2 results

for the applied load case, while tables 6.8, 6.10 and 6.12 show the same results for the applied potential

case. Also, for plates with a/h = 10, tables 6.13 and 6.15 show the UEL2 results for the applied load
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case, while tables 6.14 and 6.16 concern the applied potential case.

Similarly to the thin plates, for both applied load and potential cases, tables 6.7 and 6.8 suggest that

even for plates with a/h = 20, the displacements, in figure 6.2 and 6.3, and the electric potential, in

figure 6.5, are almost independent on the linear or quadratic z-expansion used for the electric potential,

being both good approximations to the exact solutions for thin and moderately thick plates. Figure 6.4

shows the in-plane distribution of the transverse displacement for both applied load and applied potential

cases, with UEL2 model.

However, the UEL2 displacements and electric potential are slightly more precise than UEL1 within

the piezoelectric layers, for both monitoring and actuation modes. Hence, the UEL2 quadratic z-expansion

of the electric potential improves the evaluation of the transverse electric field comparatively to UEL1

model, predicting accurate in-plane normal stresses, shown in figures 6.6 and 6.7, and enhancing the

transverse electric displacements represented in figure 6.10.

In fact, tables 6.9 and 6.10 demonstrate that in the applied potential case the UEL2 electric dis-

placements almost match the exact solutions, opposing to the applied load case, where non-vanishing

in-plane electric displacements on the plate’s top and bottom surfaces appear due to the FSDT assump-

tions, represented in figures 6.8 and 6.9, as well as a discontinuous transverse electric displacement

due to the constitutive approach.

Table 6.7: Results Case 1, with a/h = 20, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx

Exact UEL1 UEL2 Exact Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 -51.970 -52.118 -52.093 71.066 0.000 0.000 0.000 127.010 124.078 126.877
9/20 -46.399 -46.569 -46.547 71.105 0.858 0.807 0.855 113.511 113.481 113.428
2/5 -40.845 -41.019 -41.000 71.139 1.619 1.615 1.614 100.040 102.885 99.979
2/5 -40.845 -41.019 -41.000 71.139 1.619 1.615 1.614 87.380 87.498 87.457
2/15 -12.922 -13.673 -13.667 71.222 1.619 1.615 1.607 27.808 29.166 29.152
2/15 -12.922 -13.673 -13.667 71.222 1.619 1.615 1.607 3.099 2.895 2.893
0 0.097 0.000 0.000 71.228 1.621 1.615 1.606 0.225 0.000 0.000
-2/15 13.112 13.673 13.667 71.212 1.625 1.615 1.607 -2.648 -2.895 -2.893
-2/15 13.112 13.673 13.667 71.212 1.625 1.615 1.607 -27.862 -29.166 -29.152
-2/5 41.025 41.019 41.000 71.110 1.638 1.615 1.614 -87.409 -87.498 -87.457
-2/5 41.025 41.019 41.000 71.110 1.638 1.615 1.614 -100.094 -102.885 -99.979
-9/20 46.576 46.569 46.547 71.075 0.867 0.807 0.855 -113.559 -113.481 -113.428
-1/2 52.145 52.118 52.093 71.036 0.000 0.000 0.000 -127.052 -124.078 -126.877
UEL1 70.933
UEL2 70.900
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Table 6.8: Results Case 1, with a/h = 20, under applied potential.
z/h u× 1012 w × 1011 φ σxx

Exact UEL1 UEL2 Exact Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 -6.845 -6.800 -6.815 -1.218 1.0000 1.0000 1.0000 2.258 5.633 2.391
9/20 -3.039 -3.010 -3.023 -1.209 0.9997 0.9998 0.9997 -1.670 -1.631 -1.599
2/5 0.766 0.780 0.769 -1.206 0.9995 0.9995 0.9995 -5.598 -8.894 -5.590
2/5 0.766 0.780 0.769 -1.206 0.9995 0.9995 0.9995 -1.634 -1.685 -1.662
2/15 0.265 0.278 0.275 -1.207 0.6643 0.6664 0.6645 -0.566 -0.607 -0.599
2/15 0.265 0.278 0.275 -1.207 0.6643 0.6664 0.6645 -0.058 -0.061 -0.060
0 0.024 0.028 0.028 -1.208 0.4977 0.4999 0.4977 -0.006 -0.007 -0.007
-2/15 -0.217 -0.223 -0.219 -1.208 0.3316 0.3333 0.3314 0.046 0.046 0.045
-2/15 -0.217 -0.223 -0.219 -1.208 0.3316 0.3333 0.3314 0.463 0.472 0.464
-2/5 -0.717 -0.724 -0.713 -1.206 0.0002 0.0002 0.0002 1.528 1.551 1.527
-2/5 -0.717 -0.724 -0.713 -1.206 0.0002 0.0002 0.0002 -1.905 -1.795 -1.872
-9/20 -0.811 -0.823 -0.810 -1.204 0.0001 0.0001 0.0001 -1.676 -1.610 -1.641
-1/2 -0.905 -0.922 -0.908 -1.201 0.0000 0.0000 0.0000 -1.448 -1.426 -1.411
UEL1 -1.232
UEL2 -1.213

Table 6.9: Electric displacements for Case 1, with a/h = 20, under applied load.
z/h Dx × 1012 Dy × 1012 Dz × 1012

Exact UEL1 UEL2 Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 0.000 559.978 560.267 0.000 563.143 563.431 12.182 -2604.475 11.280

9/20 394.345 394.329 384.886 397.764 397.496 388.051 9.013 52.827 5.187
2/5 744.657 228.681 229.131 751.494 231.849 232.298 -0.030 2615.040 -0.906
2/5 -0.788 -0.786 -0.786 -0.676 -0.674 -0.783 -0.030 0.000 -0.091

2/15 -0.788 -0.786 -0.783 -0.676 -0.674 -0.671 0.031 0.000 -0.030
2/15 -0.676 -0.674 -0.671 -0.788 -0.786 -0.783 0.031 0.000 -0.030

0 -0.677 -0.674 -0.671 -0.789 -0.786 -0.783 0.062 0.000 0.000
-2/15 -0.678 -0.674 -0.671 -0.791 -0.786 -0.783 0.093 0.000 0.030
-2/15 -0.791 -0.786 -0.783 -0.678 -0.674 -0.671 0.093 0.000 0.030
-2/5 -0.797 -0.786 -0.786 -0.683 -0.674 -0.673 0.154 0.000 0.091
-2/5 741.290 228.681 229.131 749.347 231.849 232.298 0.154 -2615.040 0.906

-9/20 392.653 394.329 384.886 396.681 397.496 388.051 -8.857 -5.283 -5.187
-1/2 0.000 559.978 560.267 0.000 563.143 563.431 -12.014 2604.475 -11.280

Table 6.10: Electric displacements for Case 1, with a/h = 20, under applied potential.
z/h Dx × 108 Dy × 108 Dz × 108

Exact UEL1 UEL2 Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 -30.442 -30.484 -30.484 -30.442 -30.484 -30.484 -1.292 -0.994 -1.294

9/20 -30.431 -30.479 -30.478 -30.431 -30.479 -30.478 -0.814 -0.815 -0.815
2/5 -30.426 -30.474 -30.474 -30.426 -30.474 -30.474 -0.336 -0.636 -0.336
2/5 -0.049 -0.049 -0.049 -0.042 -0.042 -0.042 -0.336 -0.332 -0.335

2/15 -0.032 -0.032 -0.032 -0.028 -0.028 -0.028 -0.332 -0.332 -0.333
2/15 -0.028 -0.028 -0.028 -0.032 -0.032 -0.032 -0.332 -0.332 -0.333

0 -0.021 -0.021 -0.021 -0.024 -0.024 -0.024 -0.331 -0.332 -0.332
-2/15 -0.014 -0.014 -0.014 -0.016 -0.016 -0.016 -0.331 -0.332 -0.331
-2/15 -0.016 -0.016 -0.016 -0.014 -0.014 -0.014 -0.331 -0.332 -0.331
-2/5 0.000 0.000 0.000 0.000 0.000 -0.001 -0.330 -0.332 -0.329
-2/5 -0.006 -0.005 -0.005 -0.006 -0.005 -0.005 -0.330 -0.326 -0.330
-9/20 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.330 -0.330 -0.330
-1/2 0.000 -0.001 -0.001 0.000 -0.001 -0.001 -0.330 -0.335 -0.330
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Table 6.11: Transverse shear stresses for Case 1, with a/h = 20, under applied load.
z/h τxz τyz

Exact UEL1 UEL2 (C) UEL2 (E) Exact UEL1 UEL2 (C) UEL2 (E)
1/2 0.000 1.127 1.276 0.000 0.000 1.133 1.134 0.000

9/20 1.322 1.288 1.298 0.942 1.326 1.295 1.305 0.946
2/5 2.495 1.450 1.450 1.779 2.504 1.456 1.457 1.789
2/5 2.495 5.026 5.238 1.779 2.504 2.444 2.443 1.789

2/15 5.106 5.026 5.238 4.214 2.969 2.444 2.443 2.043
2/15 5.106 3.206 3.204 4.214 2.969 3.833 3.831 2.043

0 5.157 3.206 3.204 4.244 3.305 3.833 3.831 2.355
-2/15 5.098 3.206 3.204 4.214 2.960 3.833 3.831 2.043
-2/15 5.098 5.026 5.024 4.214 2.960 2.444 2.443 2.043
-2/5 2.491 5.026 5.024 1.779 2.512 2.444 2.443 1.797
-2/5 2.491 1.450 1.450 1.779 2.512 1.456 1.457 1.797

-9/20 1.319 1.288 1.298 0.942 1.330 1.295 1.305 0.951
-1/2 0.000 1.127 1.128 0.000 0.000 1.133 1.134 0.000

Table 6.12: Transverse shear stresses for Case 1, with a/h = 20, under applied potential.
z/h τxz τyz

Exact UEL1 UEL2 (C) UEL2 (E) Exact UEL1 UEL2 (C) UEL2 (E)
1/2 0.000 0.089 0.088 0.000 0.000 0.088 0.087 0.000
9/20 0.039 0.040 0.028 0.060 0.039 0.039 0.027 0.064
2/5 0.019 -0.010 -0.011 0.032 0.019 -0.010 -0.011 0.036
2/5 0.019 -0.022 -0.021 0.032 0.019 0.007 0.008 0.036
2/15 -0.031 -0.022 -0.021 -0.016 0.010 0.007 0.008 0.028
2/15 -0.031 -0.014 -0.013 -0.016 0.010 0.011 0.012 0.028

0 -0.032 -0.014 -0.013 -0.016 0.002 0.011 0.012 0.018
-2/15 -0.031 -0.014 -0.013 -0.016 0.006 0.011 0.012 0.021
-2/15 -0.031 -0.022 -0.021 -0.016 0.006 0.007 0.008 0.021
-2/5 0.014 -0.022 -0.021 0.026 0.014 0.007 0.008 0.025
-2/5 0.014 0.027 0.028 0.026 0.014 0.027 0.028 0.025
-9/20 0.006 0.006 0.006 0.012 0.006 0.006 0.006 0.012
-1/2 0.000 -0.015 -0.015 0.000 0.000 -0.015 -0.015 0.000

Regarding the determination of the transverse shear stresses, similar results are found in tables 6.11

and 6.12 for both UEL models when the constitutive equation is employed. The equilibrium derived

stresses differ from the exact ones, however the achieved through-thickness variation is the same as

the exact solution, where the stress-free boundary conditions and interlaminar continuity conditions are

fulfilled, as can be seen in figures 6.11 and 6.12.

Ultimately, from these figures, an additional correction factor, dependent on the loading and boundary

conditions, seems to be needed to fit the predicted equilibrium derived stresses to the exact results. The

average ratio between the equilibrium derived stresses and the exact ones is near of 0.74 for the applied

load case, while in applied potential is near of 1.16.
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Figure 6.2: In-plane displacements (u, v) for Case 1, with a/h = 20, under applied load (on the left) and
applied potential (on the right).
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Figure 6.3: Transverse displacement w for Case 1, with a/h = 20, under applied load (on the left) and
applied potential (on the right).
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Figure 6.4: In-plane variation of the transverse displacement w for Case 1, with a/h = 20, under applied
load (on the left) and applied potential (on the right) with UEL2.
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Figure 6.5: Electric potential φ for Case 1, with a/h = 20, under applied load (on the left) and applied
potential (on the right).
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Figure 6.6: In-plane normal stress σxx for Case 1, with a/h = 20, under applied load (on the left) and
applied potential (on the right).
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Figure 6.7: In-plane normal stress σyy for Case 1, with a/h = 20, under applied load (on the left) and
applied potential (on the right).
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Figure 6.8: In-plane electric displacement Dx for Case 1, witha/h = 20, under applied load (on the left)
and applied potential (on the right).

0 200 400 600 800

−4

−2

0

2

4

·10−3

Dy × 1012

z

Exact
UEL2

−30 −20 −10 0

−4

−2

0

2

4

·10−3

Dy × 108

z

Exact
UEL2

Figure 6.9: In-plane electric displacement Dy for Case 1, with a/h = 20, under applied load (on the left)
and applied potential (on the right).
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Figure 6.10: Transverse electric displacement Dz for Case 1, with a/h = 20, under applied load (on the
left) and applied potential (on the right).
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Figure 6.11: Shear stress τxz for Case 1, with a/h = 20, under applied load (on the left) and applied
potential (on the right).
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Figure 6.12: Shear stress τyz for Case 1, with a/h = 20, under applied load (on the left) and applied
potential (on the right).
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Due to the FSDT assumptions, one shall expect that the shear effects become more important for

the analysis of thicker plates, particularly for a/h = 10 rather than for a/h = 20. These effects are mainly

felt in the applied load case (table 6.13), where the achieved displacements start to differ to the exact

ones, and consequently the in-plane stresses within the multilayered composite core follow the same

tendency. Hence, the accuracy of both constitutively derived and equilibrium derived transverse shear

stresses is also affected, as can be seen in table 6.5.

On the other hand, for the applied potential case, tables 6.14 and 6.16 demonstrate that UEL2 results

remain in relatively good agreement with the exact solutions, even for plates with a/h = 10.

Table 6.13: Results Case 1, with a/h = 10, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -6.540 -6.573 5.370 0.00000 0.00000 32.727 32.421 0.000 283.161
2/5 -4.872 -4.926 5.388 0.40034 0.40825 24.618 24.425 380.435 115.545
2/5 -4.872 -4.926 5.388 0.40034 0.40825 21.129 21.036 -0.390 -0.398
2/15 -1.285 -1.642 5.396 0.40025 0.40198 5.758 7.012 -0.390 -0.392
2/15 -1.285 -1.642 5.396 0.40025 0.40198 0.916 0.703 -0.334 -0.336

0 0.056 0.000 5.393 0.40249 0.40119 0.222 0.000 -0.336 -0.335
-2/15 1.392 1.642 5.386 0.40626 0.40198 -0.470 -0.703 -0.339 -0.336
-2/15 1.392 1.642 5.386 0.40626 0.40198 -5.857 -7.012 -0.396 -0.392
-2/5 4.957 4.926 5.358 0.41845 0.40825 -21.136 -21.036 -0.407 -0.398
-2/5 4.957 4.926 5.358 0.41845 0.40825 -24.649 -24.425 373.180 115.545
-1/2 6.615 6.573 5.340 0.00000 0.00000 -32.712 -32.421 0.000 283.161

UEL2 5.313

Table 6.14: Results Case 1, with a/h = 10, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -13.207 -13.197 -1.265 1.000 1.000 16.993 17.636 -60.885 -60.943
2/5 1.988 1.986 -1.227 0.999 0.999 -14.335 -14.196 -60.787 -60.891
2/5 1.988 1.986 -1.227 0.999 0.999 -8.525 -8.531 -0.097 -0.097
2/15 0.935 1.027 -1.238 0.658 0.658 -4.032 -4.424 -0.064 -0.064
2/15 0.935 1.027 -1.238 0.658 0.658 -0.451 -0.467 -0.055 -0.055

0 0.497 0.547 -1.241 0.491 0.491 -0.255 -0.260 -0.041 -0.041
-2/15 0.067 0.068 -1.242 0.326 0.326 -0.062 -0.053 -0.027 -0.027
-2/15 0.067 0.068 -1.242 0.326 0.326 -0.314 -0.316 -0.032 -0.032
-2/5 -0.877 -0.891 -1.240 0.000 0.000 3.718 3.791 0.000 0.000
-2/5 -0.877 -0.891 -1.240 0.000 0.000 0.348 0.519 -0.015 -0.012
-1/2 -1.262 -1.277 -1.234 0.000 0.000 2.221 2.386 0.000 -0.005

UEL2 -1.234

55



Table 6.15: Transverse electric displacement and transverse shear stresses for Case 1, with a/h = 10,
under applied load.

z/h Dz × 1012 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 12.650 11.462 0.000 0.570 0.000 0.000 0.581 0.000
2/5 -0.031 -0.939 1.256 0.733 0.891 1.279 0.745 0.913
2/5 -0.031 -0.092 1.256 2.480 0.891 1.279 1.240 0.913

2/15 0.029 -0.031 2.463 2.480 2.063 1.531 1.240 1.041
2/15 0.029 -0.031 2.463 1.581 2.063 1.531 1.945 1.041
-2/15 0.090 0.031 2.480 1.581 2.063 1.511 1.945 1.041
-2/15 0.090 0.031 2.480 2.480 2.063 1.511 1.240 1.041
-2/5 0.153 0.092 1.264 2.480 0.891 1.291 1.240 0.917
-2/5 0.153 0.939 1.264 0.657 0.891 1.291 0.745 0.917
-1/2 -12.337 -11.462 0.000 0.570 0.000 0.000 0.581 0.000

Table 6.16: Transverse electric displacement and transverse shear stresses for Case 1, with a/h = 10,
under applied potential.

z/h Dz × 108 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 -4.168 -4.174 0.000 0.664 0.000 0.000 0.648 0.000
2/5 -0.347 -0.347 0.362 0.151 0.373 0.327 0.135 0.354
2/5 -0.347 -0.343 0.362 -0.155 0.373 0.327 0.055 0.354

2/15 -0.334 -0.336 -0.207 -0.155 -0.169 0.209 0.055 0.279
2/15 -0.334 -0.336 -0.207 -0.099 -0.169 0.209 0.086 0.279
-2/15 -0.327 -0.328 -0.248 -0.099 -0.191 -0.101 0.086 -0.043
-2/15 -0.327 -0.328 -0.248 -0.155 -0.191 -0.101 0.055 -0.043
-2/5 -0.324 -0.321 -0.098 -0.155 -0.045 -0.085 0.055 -0.035
-2/5 -0.324 -0.325 -0.098 -0.025 -0.045 -0.085 -0.020 -0.035
-1/2 -0.324 -0.324 0.000 -0.092 0.000 0.000 -0.087 0.000

6.3.3 Thick Plates

For thick plates with a/h = 4, tables 6.17 and 6.19 show the UEL2 results for the applied load case,

while tables 6.18 and 6.20 concern the applied potential case. The only values of reference are given

at the interfaces between the composite core and the piezoelectric face layers, since for thick plates

the plane stress and the FSDT assumptions are significantly far from the complex through-thickness

variation shown by the exact solutions.

Hence, the discrepancy between the present model and the exact solutions, caused by the reduced

side-to-thickness ratio, is visible in all variables, for both loading cases.

Table 6.17: Results Case 1, with a/h = 4, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
2/5 -0.253 -0.253 0.315 0.058 0.070 3.627 3.359 181.761 81.947
2/5 -0.253 -0.253 0.315 0.058 0.070 3.042 2.718 -0.140 51.211
-2/5 0.275 0.253 0.286 0.073 0.070 -2.924 -2.718 -0.177 -0.169
-2/5 0.275 0.253 0.286 0.073 0.070 -3.549 -3.359 156.167 51.211

UEL2 0.291
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Table 6.18: Results Case 1, with a/h = 4, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
2/5 5.070 4.731 -1.352 0.9930 0.9932 -79.342 -71.941 -150.852 -151.235
2/5 5.070 4.731 -1.352 0.9930 0.9932 -55.001 -51.024 -0.242 -0.242
-2/5 -1.209 -1.346 -1.388 -0.0001 -0.0002 12.768 14.482 0.000 0.000
-2/5 -1.209 -1.346 -1.388 -0.0001 -0.0002 10.559 15.402 -0.085 -0.046

UEL2 -1.359

Table 6.19: Transverse electric displacement and transverse shear stresses for Case 1, with a/h = 4,
under applied load.

z/h Dz × 1012 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

2/5 -0.033 -0.974 0.542 0.286 0.368 0.551 0.331 0.397
2/5 -0.033 -0.091 0.542 0.316 0.368 0.551 0.526 0.397
-2/5 0.140 0.091 0.537 0.316 0.368 0.562 0.526 0.399
-2/5 0.140 0.974 0.537 0.286 0.368 0.562 0.331 0.399

Table 6.20: Transverse electric displacement and transverse shear stresses for Case 1, with a/h = 4,
under applied potential.

z/h Dz × 108 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

2/5 -0.419 -0.412 5.796 3.367 6.358 4.465 2.848 5.418
2/5 -0.419 -0.395 5.796 -1.743 6.358 4.465 0.410 5.418
-2/5 -0.287 -0.265 -1.939 -1.743 -1.694 -1.855 0.410 -1.932
-2/5 -0.287 -0.288 -1.939 -1.437 -1.694 -1.855 -1.552 -1.932

6.4 Case 2 - Orthotropic Piezoelectric Layers
Static analysis results for simply-supported plates of Case 2, [PVDF/90◦ /0◦ /90◦ /PVDF] with PVDF

layers at 0◦ , under applied bi-sinusoidal load or applied potential, from thin to thicker plates.

6.4.1 Thin Plates

For thin plates with a/h = 100, tables 6.21 and 6.23 show the results using UEL2 for applied load, as

well as tables 6.22 and 6.24 for applied potential. In Appendix E, tables E.3 and E.4 show similar results

when UEL1 model is used instead of UEL2, as already seen for the thin plates in Case 1.

From tables 6.21 and 6.22, one can see that for both loading conditions, the displacements and

electric potential are in agreement with the exact solutions. However, due to the FSDT assumption of

constant transverse shear strains, specially in the applied load case, the in-plane electric displacement

within the piezoelectric layers does not match the exact solutions, since the in-plane electric displace-

ments are dependent on the transverse shear strains from the constitutive equation (2.15).

For the applied potential case, the exact solution demonstrates that both piezoelectric layers exhibit

significant variations of transverse displacements within the piezoelectric layers, which is due to a higher

transverse normal compressibility of the piezoelectric polymer PVDF comparatively to the piezoceramic

PZT-4 (see material properties in table 6.1), where the transverse normal strains are almost negligible.

Concerning the transverse electric displacement, one can see from table 6.23 that in the applied
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Table 6.21: Results Case 2, with a/h = 100, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -8364.63 -8366.15 53397.96 0.00 0.00 6339.58 6352.10 0.00 -22.29
2/5 -6689.30 -6690.70 53398.95 34.01 33.71 5069.88 5080.00 -54.73 -34.01
2/5 -6689.30 -6690.70 53398.95 34.01 33.71 282.14 282.24 -2.84 -2.81
-2/5 6690.55 6690.70 53398.92 33.79 33.71 -281.70 -282.24 -2.82 -2.81
-2/5 6690.55 6690.70 53398.92 33.79 33.71 -5070.60 -5080.00 -54.66 -34.01
-1/2 8365.88 8366.15 53397.92 0.00 0.00 -6340.31 -6352.10 0.00 -22.29

UEL2 53402.09

Table 6.22: Results Case 2, with a/h = 100, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -1.188 -1.182 0.092 1.000 1.000 -1.098 -1.097 -0.035 -0.035
2/5 -1.193 -1.188 0.019 0.972 0.972 -1.092 -1.091 -0.034 -0.034
2/5 -1.193 -1.188 0.019 0.972 0.972 0.055 0.055 -0.008 -0.008
-2/5 -1.188 -1.183 0.022 0.028 0.028 0.055 0.054 0.000 0.000
-2/5 -1.188 -1.183 0.022 0.028 0.028 -1.095 -1.093 -0.001 -0.001
-1/2 -1.189 -1.183 -0.050 0.000 0.000 -1.094 -1.093 0.000 0.000

UEL2 0.021

load case, the present UEL2 model does not satisfy the exact solutions due to the insufficient linear

z-expansion of the transverse electric field in UEL2 model. While in the applied potential case, tables

6.24 and E.4, show that both UEL models are capable to achieve accurate predictions of transverse

electric displacements for thin plates.

Furthermore, the equilibrium derived transverse shear stresses in tables 6.23 and 6.24 are far more

accurate than the constitutively derived ones. Also, when comparing the respective values associated

to Case 1 (tables 6.5 and 6.6), one can see that in Case 2 the equilibrium derived stresses are closer to

the exact solutions.

Table 6.23: Transverse electric displacement and transverse shear stresses for Case 2, with a/h = 100,
under applied load.

z/h Dz × 1012 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 -0.915 -0.206 0.000 9.809 0.000 0.000 1.539 0.000
2/5 -0.785 -0.077 18.877 9.808 17.909 2.961 1.538 2.034
2/5 -0.785 -0.077 18.877 18.073 17.909 2.961 17.663 2.034
-2/5 -0.631 0.077 18.879 18.073 17.909 2.961 17.663 2.101
-2/5 -0.631 0.077 18.879 9.808 17.909 2.961 1.538 2.101
-1/2 -0.501 0.206 0.000 9.809 0.000 0.000 1.539 0.000
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Table 6.24: Transverse electric displacement and transverse shear stresses for Case 2, with a/h = 100,
under applied potential.

z/h Dz × 108 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 -0.3140 -0.3145 0.000 -0.002 0.000 0.000 -0.004 0.000
2/5 -0.3138 -0.3142 -0.003 -0.001 -0.002 -0.007 -0.003 -0.006
2/5 -0.3138 -0.3142 -0.003 0.000 -0.002 -0.007 0.000 -0.006
-2/5 -0.3136 -0.3140 0.003 0.000 0.003 0.007 0.000 0.007
-2/5 -0.3136 -0.3140 0.003 0.001 0.003 0.007 0.003 0.007
-1/2 -0.3136 -0.3140 0.000 0.002 0.000 0.000 0.004 0.000

6.4.2 Moderately Thick Plates
For moderately thick plates with a/h = 20, tables 6.25, 6.27 and 6.29 show the results for both

UEL models with applied load, while tables 6.26, 6.28 and 6.30 show the results for applied potential.

Similarly to the thin plate results, both UEL models provide almost the same level of accuracy for the

two loading conditions, regarding plates with a/h = 20. A further reduction in the analysis of moderately

thick plates is made by considering plates with a/h = 10, where the UEL2 results are shown in tables

6.31 and 6.33 for applied load, and in tables 6.32 and 6.34 for applied potential.

Regarding the applied load case, the achieved results for both aspect ratios (a/h = 20 and 10) are in

agreement with the exact solutions, although the electric potential for the upper part of the plate (z > 0)

starts to differ from the exact solution in more then 10% for a/h = 20 (figure 6.14), increasing for 30%

with a/h = 10. Hence, the transverse electric displacements do not agree with the exact solutions as

already seen for thin plates. Also, the in-plane electric displacements are wrongly determined, specially

for the piezoelectric layers, where the transverse normal strains and transverse shear effects become

more important in moderately thick and thick plates, grossly taken into account on the FSDT assumptions

used in the developed UEL models.

In the applied potential case, the results for both plate’s aspect ratios are in good agreement with

the exact solutions, evidencing a better approximation than in the applied load case, particularly for the

electric variables. The major discrepancy between the present models and the exact solution is found

on the transverse displacement in tables 6.26 and 6.32, as already mentioned for thin plates, since in

the applied potential case, the piezoelectric layers made of PVDF undergo in considerable transverse

normal strains, as can be seen in figure 6.13, which in the present FSDT models are assumed to be

negligible. Moreover, when comparing the in-plane displacements and the in-plane normal stresses in

the previous tables, one can see a lost on the accuracy of the UEL2 model when the plate’s aspect ratio

goes from a/h = 20, with relative errors near of 1%, to a/h = 10, with associated relative errors near of

5% .

Concerning the transverse shear stresses, tables 6.29 and 6.30 for a/h = 20, as well as tables 6.33

and 6.34 for a/h = 10, suggest that for both aspect ratios, the quadratic equilibrium derived stresses are

more precise than the constitutively derived ones, namely for the applied load case.
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Table 6.25: Results Case 2, with a/h = 20, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx

Exact UEL1 UEL2 Exact Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 -66.628 -66.580 -66.580 90.708 0.000 0.000 0.000 252.79 252.84 252.85
2/5 -52.819 -52.823 -52.823 90.740 1.578 1.354 1.354 200.44 200.62 200.61
2/5 -52.819 -52.823 -52.823 90.740 1.578 1.354 1.354 11.65 11.20 11.20
-2/5 53.066 52.823 52.823 90.710 1.365 1.354 1.354 -11.21 -11.20 -11.20
-2/5 53.066 52.823 52.823 90.710 1.365 1.354 1.354 -201.15 -200.62 -200.61
-1/2 66.868 66.580 66.580 90.670 0.000 0.000 0.000 -253.48 -252.84 -252.85
UEL1 & UEL2 90.392

Table 6.26: Results Case 2, with a/h = 20, under applied potential.
z/h u× 1012 w × 1011 φ σxx

Exact UEL1 UEL2 Exact Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 -0.235 -0.225 -0.226 0.093 1.000 1.000 1.000 -1.163 -1.177 -1.194
2/5 -0.260 -0.255 -0.256 0.019 0.972 0.972 0.972 -1.035 -1.062 -1.045
2/5 -0.260 -0.255 -0.256 0.019 0.972 0.972 0.972 0.059 0.058 0.058
-2/5 -0.234 -0.230 -0.230 0.022 0.027 0.027 0.027 0.054 0.053 0.053
-2/5 -0.234 -0.230 -0.230 0.022 0.027 0.027 0.027 -1.097 -1.106 -1.107
-1/2 -0.238 -0.229 -0.229 -0.050 0.000 0.000 0.000 -1.079 -1.109 -1.109
UEL1 & UEL2 0.021
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Figure 6.13: Transverse displacement w for Case 2, with a/h = 20, under applied load (on the left) and
applied potential (on the right).
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Figure 6.14: Electric potential φ for Case 2, with a/h = 20, under applied load (on the left) and applied
potential (on the right).
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Table 6.27: In-plane and transverse electric displacements for Case 2, with a/h = 20, under applied
load.

z/h Dx × 1012 Dz × 1012

Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 0.000 -4.430 -4.430 -0.930 -17.830 -0.213
2/5 -11.261 -6.785 -6.785 -0.794 17.536 -0.082
2/5 -0.658 -0.565 -0.565 -0.794 0.000 -0.077
-2/5 -0.569 -0.565 -0.565 -0.627 0.000 0.077
-2/5 -10.917 -6.785 -6.785 -0.627 -17.536 0.082
-1/2 0.000 -4.430 -4.430 -0.497 17.830 0.213

Table 6.28: In-plane and transverse electric displacements for Case 2, with a/h = 20, under applied
potential.

z/h Dx × 108 Dz × 108

Exact UEL1 UEL2 Exact UEL1 UEL2
1/2 -0.174 -0.174 -0.174 -0.323 -0.320 -0.323
2/5 -0.169 -0.169 -0.169 -0.317 -0.320 -0.318
2/5 -0.041 -0.041 -0.041 -0.317 -0.314 -0.317
-2/5 -0.001 -0.001 -0.001 -0.312 -0.314 -0.311
-2/5 -0.005 -0.005 -0.005 -0.312 -0.312 -0.312
-1/2 0.000 0.000 0.000 -0.312 -0.312 -0.312

Table 6.29: Transverse shear stresses for Case 2, with a/h = 20, under applied load.
z/h τxz τyz

Exact UEL1 UEL2 (C) UEL2 (E) Exact UEL1 UEL2 (C) UEL2 (E)
1/2 0.000 1.949 1.949 0.000 0.000 0.311 0.311 0.000
2/5 3.747 1.949 1.949 3.552 0.601 0.311 0.311 0.412
2/5 3.747 3.588 3.587 3.552 0.601 3.572 3.572 0.412
-2/5 3.759 3.588 3.587 3.552 0.600 3.572 3.572 0.426
-2/5 3.759 1.949 1.949 3.552 0.600 0.311 0.311 0.426
-1/2 0.000 1.949 1.949 0.000 0.000 0.311 0.311 0.000

Table 6.30: Transverse shear stresses for Case 2, with a/h = 20, under applied potential.
z/h τxz τyz

Exact UEL1 UEL2 (C) UEL2 (E) Exact UEL1 UEL2 (C) UEL2 (E)
1/2 0.000 -0.011 -0.011 0.000 0.000 -0.021 -0.021 0.000
2/5 -0.016 -0.006 -0.006 -0.009 -0.037 -0.016 -0.016 -0.029
2/5 -0.016 0.000 0.000 -0.009 -0.037 0.000 0.000 -0.029
-2/5 0.016 0.000 0.000 0.017 0.035 0.000 0.000 0.036
-2/5 0.016 0.006 0.006 0.017 0.035 0.016 0.016 0.036
-1/2 0.000 0.010 0.010 0.000 0.000 0.020 0.020 0.000
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Table 6.31: Results Case 2, with a/h = 10, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -8.244 -8.219 6.716 0.000 0.000 62.792 62.492 0.000 -2.178
2/5 -6.352 -6.360 6.717 0.564 0.343 48.426 48.360 -6.135 -3.370
2/5 -6.352 -6.360 6.717 0.564 0.343 3.205 2.735 -0.471 -0.286
-2/5 6.471 6.360 6.688 0.351 0.343 -2.758 -2.735 -0.293 -0.286
-2/5 6.471 6.360 6.688 0.351 0.343 -49.109 -48.360 -5.440 -3.370
-1/2 8.351 8.219 6.677 0.000 0.000 -63.377 -62.492 0.000 -2.178

UEL2 6.610

Table 6.32: Results Case 2, with a/h = 10, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
1/2 -0.115 -0.096 0.097 1.000 1.000 -1.360 -1.494 -0.348 -0.348
2/5 -0.163 -0.156 0.019 0.970 0.970 -0.855 -0.902 -0.337 -0.338
2/5 -0.163 -0.156 0.019 0.970 0.970 0.074 0.070 -0.081 -0.081
-2/5 -0.111 -0.104 0.022 0.027 0.027 0.052 0.048 -0.002 -0.002
-2/5 -0.111 -0.104 0.022 0.027 0.027 -1.104 -1.149 -0.009 -0.009
-1/2 -0.119 -0.103 -0.048 0.000 0.000 -1.036 -1.158 0.000 0.000

UEL2 0.021

Table 6.33: Transverse electric displacement and transverse shear stresses for Case 2, with a/h = 10,
under applied load.

z/h Dz × 1012 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 -0.974 -0.213 0.000 0.958 0.000 0.000 0.161 0.000
2/5 -0.820 -0.083 1.836 0.958 1.737 0.313 0.160 0.214
2/5 -0.820 -0.077 1.836 1.758 1.737 0.313 1.838 0.214
-2/5 -0.614 0.077 1.857 1.758 1.737 0.311 1.838 0.221
-2/5 -0.614 0.083 1.857 0.958 1.737 0.311 0.160 0.221
-1/2 -0.482 0.213 0.000 0.958 0.000 0.000 0.161 0.000

Table 6.34: Transverse electric displacement and transverse shear stresses for Case 2, with a/h = 10,
under applied potential.

z/h Dz × 108 τxz τyz
Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)

1/2 -0.348 -0.348 0.000 -0.024 0.000 0.000 -0.045 0.000
2/5 -0.337 -0.338 -0.033 -0.015 -0.020 -0.078 -0.035 -0.064
2/5 -0.081 -0.081 -0.033 0.000 -0.020 -0.078 0.001 -0.064
-2/5 -0.002 -0.002 0.032 0.000 0.036 0.069 0.001 0.071
-2/5 -0.009 -0.009 0.032 0.013 0.036 0.069 0.031 0.071
-1/2 0.000 0.000 0.000 0.022 0.000 0.000 0.039 0.000

6.4.3 Thick Plates

For thick plates with a/h = 4, tables 6.35 and 6.37 show the UEL2 results for the applied load case,

while tables 6.36 and 6.38 concern the applied potential case. The only values of reference are given

at the interfaces between the composite core and the piezoelectric face layers, since for thick plates the

FSDT kinematic assumptions are significantly far from the complex zig-zag through-thickness variation
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shown by the exact solutions, as seen previously in Case 1.

The consequent discrepancy between the present model and the exact solutions is visible in almost

all variables, for both loading cases. However, in the applied potential case, as shown in table 6.36,

the quadratic z-expansion for the electric potential of UEL2 remains capable to almost match the ex-

act solutions in the through-thickness distribution of the electric potential , as well as for the electric

displacements.

Table 6.35: Results Case 2, with a/h = 4, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
2/5 -0.318 -0.338 0.372 0.278 0.058 6.299 6.462 -0.396 -1.337
2/5 -0.318 -0.338 0.372 0.278 0.058 0.855 0.388 -0.581 -0.121
-2/5 0.361 0.338 0.343 0.064 0.058 -0.400 -0.388 -0.133 -0.121
-2/5 0.361 0.338 0.343 0.064 0.058 -6.892 -6.462 -2.152 -1.337

UEL2 0.338

Table 6.36: Results Case 2, with a/h = 4, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108

Exact UEL2 Exact Exact UEL2 Exact UEL2 Exact UEL2
2/5 -0.151 -0.135 0.021 0.959 0.959 0.324 0.035 -0.834 -0.835
2/5 -0.151 -0.135 0.021 0.959 0.959 0.172 0.144 -0.200 -0.200
-2/5 -0.028 -0.013 0.022 0.023 0.023 0.038 0.016 -0.005 -0.005
-2/5 -0.028 -0.013 0.022 0.023 0.023 -1.161 -1.452 -0.020 -0.020

UEL2 0.021

Table 6.37: Transverse electric displacement and transverse shear stresses for Case 2, with a/h = 4,
under applied load.
z/h Dz × 1012 τxz τyz

Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)
2/5 -0.990 -0.083 0.676 0.367 0.642 0.159 0.074 0.099
2/5 -0.990 -0.076 0.676 0.654 0.642 0.159 0.804 0.099
-2/5 -0.536 0.076 0.703 0.654 0.642 0.148 0.804 0.102
-2/5 -0.536 0.083 0.703 0.367 0.642 0.148 0.074 0.102

Table 6.38: Transverse electric displacement and transverse shear stresses for Case 2, with a/h = 4,
under applied potential.
z/h Dz × 108 τxz τyz

Exact UEL2 Exact UEL2 (C) UEL2 (E) Exact UEL2 (C) UEL2 (E)
2/5 -0.398 -0.398 -0.087 -0.074 -0.084 -0.270 -0.137 -0.237
2/5 -0.398 -0.375 -0.087 0.004 -0.084 -0.270 0.009 -0.237
-2/5 -0.267 -0.247 0.077 0.004 0.115 0.149 0.009 0.159
-2/5 -0.267 -0.268 0.077 0.047 0.115 0.149 0.069 0.159
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Chapter 7

Free Vibration Analysis Results

In this chapter, the free vibration analysis results are presented for the same piezoelectric multilayered

composite plates, considered in Section 6.1 for static analysis. Particularly, the first twelve vibration

frequencies ωmn and associated modes (m,n) are determined, where m and n represent the number of

half-waves in the x-direction and y-direction, respectively. The same simply-supported conditions and

grounded plate edges in equations (6.3) and (6.4), respectively, are also used in free vibration analysis

for comparison proposes with exact solutions.

Additionally, from Moleiro et al. [12], the grounded homogeneous potential conditions on both plate’s

surfaces, i.e.,

φ(x, y, z = h/2) = φ(x, y, z = −h/2) = 0 (7.1)

provides lowest vibration frequencies when compared to other sets of possible electric boundary condi-

tions. Following this, both top and bottom surfaces of the multilayered plate are assumed to be grounded,

requiring that φ1(x, y) = φ4(x, y) = 0 for the developed UEL models.

For comparison proposes, the same unitary density is used for both piezoelectric and composite

materials, i.e., ρ = 1 kg/m3 instead of the real ones, presented in table 6.1. Hence, the results of

both UEL1 and UEL2 models are compared to the ones obtained using a piezoelectric 3D element

(C3D20RE) available in Abaqus, as well as to the exact solutions reported by Moleiro et al. [13] for the

two thicker plates, with a/h = 10 and 4.

7.1 Convergence Study
For dynamic analysis, the convergence study of the UEL2 is carried out for the piezoelectric plate

of Case 1, with a/h = 20, as shown in table 7.1, noting that a similar convergence is achieved when

using UEL1 instead of UEL2. The first three vibration frequencies are followed from a mesh with 6 × 6

elements to the most refined mesh with 30×30 elements and compared to the Abaqus-3D solutions, with

one element per layer, along with 30 × 30 in-plane elements, for which the convergence of the in-plane

refinements is omitted for brevity. Furthermore, the relative discrepancy between the results in tables

6.2 to 7.11 (except tables 7.2 and 7.3) is obtained following: δ(%) = (ωUEL − ωref)× 100/ωref, where the

reference solution ωref is the exact solution, when available, otherwise Abaqus-3D solution is considered.
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From table 7.1, one could see that the fundamental frequency is the less sensitive to the successive

mesh refinements, while the higher order vibration frequencies (second and third modes) have slower

convergence behaviours. Although the coarser mesh presents accurate results relative to the reference

solution, one could expect an increase in the relative discrepancy for the remaining nine modes of

interest. Hence, the most refined mesh is the chosen one due to a good compromise between the

computational effort and accuracy of the results.

Table 7.1: Convergence of the first three vibration frequencies (rad/s) for UEL2, in Case 1, with a/h = 20.

Mesh ω11 δ11 (%) ω12 δ12 (%) ω21 δ21 (%)

6x6 374912 0.29 828258 0.32 998175 1.48
10x10 374878 0.28 827172 0.19 996710 1.34
20x20 374876 0.28 827105 0.18 996623 1.33
30x30 374874 0.28 827010 0.17 996489 1.31

Abaqus-3D 373829 825588 983573

Regarding the analysis of the thicker plates with a/h = 4, using Abaqus-3D elements, the 30 × 30

mesh with one element per layer, M(5), show a considerable error relative to the exact solutions for the

higher order modes, as can be seen in table 7.2. Consequently, for this aspect ratio a refined mesh with

the same in-plane refinement, but with two elements per layer across the transverse direction, M(10),

is used in order to better predict the complex behaviour of thicker plates. The results in table 7.2 show

very precise solutions when using M(10) instead of M(5), hence two elements per layer are considered

in the analysis of thicker plates with the brick elements.

Table 7.2: Convergence of the first thirteen vibration frequencies (rad/s), for thickness refinements of an
in-plane mesh of 30×30 Abaqus-3D elements C3D20RE, in Case 1, with a/h = 4.

(m,n) Exact M(5) δ(%) M(10) δ(%)

(1,1)-1 5707395 5513810 -3 5707450 0
(1,0) 8032970 8031020 0 8033060 0
(0,1) 8055542 8053690 0 8055640 0
(1,2) 10142101 9844950 -3 10142400 0
(2,1) 10524397 10240600 -3 10524800 0
(2,2) 13660384 10457200 -23 13660800 0
(1,3) 15219227 10547900 -31 15219900 0
(2,0) 15676601 10627300 -32 15676800 0
(0,2) 15841211 10683700 -33 15841400 0
(3,1) 15957590 10779200 -32 15958500 0
(2,3) 17869324 10907600 -39 17869900 0
(3,2) 18305531 10931600 -40 18306300 0
(1,1)-2 19130095 11123150 -42 19125700 0

In table 7.2, the thirteenth vibration mode, (1,1)-2, is added since it represents the second time that

the fundamental mode (1,1)-1 appears for the multilayered plate of Case 1 with a/h = 4. In fact, the (1,1)-

2 mode is a thickness mode, where transverse normal strains εzz are no more negligible, opposing to

the fundamental mode where the plate’s thickness remains almost constant while the plate its vibrating,

as reported in Moleiro [13].

In table 7.3, a comparison between the UEL models with 30 × 30 elements and the Abaqus-3D
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meshes is presented, regarding the number of DOFs and nodes used in each finite element model.

Table 7.3: Models comparison for plane meshes with 30x30 elements .
Model # DOFs/node # Nodes # DOFs
UEL1 13 2821 36673
UEL2 16 2821 45136

Abaqus-3D M(5) 4 21731 86924
Abaqus-3D M(10) 4 40641 162564

7.2 Thin Plates
For thin plates with a/h = 100, the vibration frequencies and associated modes for both Case 1 and

Case 2 are shown in the tables 7.4 and 7.5, respectively. For both stacking schemes, all first twelve

modes are the typical flexural or bending modes, being the results in excellent agreement with the

reference solution (Abaqus-3D).

Table 7.4: Vibration frequencies ωmn (rad/s) for Case 1, with a/h = 100.

(m,n) Abaqus-3D UEL1 UEL2 δ1 (%) δ2 (%)

(1,1) 15528 15522 15525 -0.04 -0.02
(1,2) 35490 35473 35481 -0.05 -0.03
(2,1) 44168 44183 44189 0.03 0.05
(2,2) 61807 61811 61823 0.01 0.03
(1,3) 69831 69795 69811 -0.05 -0.03
(3,1) 92138 92257 92270 0.13 0.14
(2,3) 93991 93979 94000 -0.01 0.01
(3,2) 108365 108477 108494 0.10 0.12
(1,4) 117883 117824 117852 -0.05 -0.03
(3,3) 137954 138052 138078 0.07 0.09
(2,4) 140600 140571 140603 -0.02 0.00
(4,1) 158412 158823 158843 0.26 0.27

Table 7.5: Vibration frequencies ωmn (rad/s) for Case 2, with a/h = 100.

(m,n) Abaqus-3D UEL1 UEL2 δ (%)

(1,1) 13681 13683 13683 0.02
(1,2) 34509 34535 34535 0.08
(2,1) 41837 41846 41846 0.02
(2,2) 54496 54521 54521 0.05
(1,3) 72764 72903 72903 0.19
(2,3) 86179 86308 86308 0.15
(3,1) 90696 90735 90735 0.04
(3,2) 98974 99027 99027 0.05
(3,3) 121768 121899 121899 0.11
(1,4) 126462 126893 126893 0.34
(2,4) 136408 136825 136825 0.31
(4,1) 158453 158579 158579 0.08

Furthermore, in Case 1 both UEL models conduct to very similar vibration frequencies, while in Case

2 the models are coincident, due to a weaker electromechanical coupling in Case 2 comparatively to

Case 1, i.e., lower piezoelectric coefficients (see the material properties in table 6.1), and consequent
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insensitivity to the linear or quadratic z-expansions of the electric potential.

7.3 Moderately Thick Plates
For moderately thick plates with a/h = 20 and 10, the vibration frequencies and associated modes,

for both Case 1 and Case 2, are shown in tables 7.6 and 7.7 for a/h = 20, respectively, likewise in tables

7.8 and 7.9 for a/h = 10. From these tables, one could see that in the first twelve vibration frequencies,

some special modes, with null transverse displacement, known as membrane modes, in the form of

(m, 0) and (0, n) emerge among the flexural modes, for moderately thick plates. These special modes

only exhibit harmonic motion on the in-plane displacements, opposing to the flexural modes.

Similarly to the thin plates results, for the moderately thick plates with a/h = 20, the UEL models

show very close values for the vibration frequencies of Case 1, while for Case 2 both UEL results are

coincident. For both piezoelectric multilayered plates with a/h = 20, the achieved frequencies are in

good agreement with the reference solutions, obtained using Abaqus-3D elements.

Table 7.6: Vibration frequencies ωmn (rad/s) for Case 1, with a/h = 20.

(m,n) Abaqus-3D UEL1 UEL2 δ1 (%) δ2 (%)

(1,1) 373829 374798 374874 0.26 0.28
(1,2) 825588 826792 827010 0.15 0.17
(2,1) 983573 996306 996489 1.29 1.31
(2,2) 1352630 1364710 1365050 0.89 0.92
(1,3) 1532650 1534950 1535420 0.15 0.18
(1,0) 1619960 1620510 1620510 0.03 0.03
(0,1) 1620150 1620510 1620510 0.02 0.02
(3,1) 1845390 1890250 1890640 2.43 2.45
(2,3) 1974270 1986520 1987150 0.62 0.65
(3,2) 2151350 2193270 2193840 1.95 1.98
(1,4) 2409900 2414460 2415350 0.19 0.23
(3,3) 2675670 2714400 2715290 1.45 1.48

Table 7.7: Vibration frequencies ωmn (rad/s) for Case 2, with a/h = 20.

(m,n) Abaqus-3D UEL1 UEL2 δ (%)

(1,1) 331036 332008 332008 0.29
(1,2) 790713 803598 803598 1.63
(2,1) 935453 939386 939386 0.42
(0,1) 1197230 1197240 1197240 0.00
(1,0) 1197230 1223360 1223360 2.18
(2,2) 1211270 1223360 1223360 1.00
(1,3) 1523590 1573740 1573740 3.29
(3,1) 1804450 1830290 1830290 1.43
(2,3) 1817020 1850440 1850440 1.84
(3,2) 1993880 2012000 2012000 0.91
(0,2) 2394460 2394480 2394480 0.00
(2,0) 2394460 2394480 2394480 0.00
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For plates with a/h = 10, the exact solutions reported by Moleiro et al. [13] are also presented and

used as reference solution in the relative error computation. The results from the exact solutions and

the Abaqus-3D elements are in good agreement, as expected from the quadratic twenty node element.

Moreover, even being a/h = 10 the limit of applicability of the FSDT assumptions, the vibration results

obtained with both UEL models, shown in tables 7.8 and 7.9, reveal a good resemblance to the exact

ones. Again, in Case 1 both UEL models show similar results between them, being coincident in Case

2, as seen previously for plates with a/h = 20 and 100.

Table 7.8: Vibration frequencies ωmn (rad/s) for Case 1, with a/h = 10.

(m,n) Exact Abaqus-3D UEL1 UEL2 δ1 (%) δ2 (%)

(1,1) 1352637 1352630 1364713 1365092 0.89 0.92
(1,2) 2782211 2782530 2796307 2797477 0.51 0.55
(2,1) 3094893 3095080 3183149 3184097 2.85 2.88
(1,0) 3236504 3236540 3241018 3241018 0.14 0.14
(0,1) 3237982 3238020 3241018 3241018 0.09 0.09
(2,2) 4157822 4158160 4232076 4233974 1.79 1.83
(1,3) 4710385 4711530 4732349 4734878 0.47 0.52
(3,1) 5160833 5161900 5354052 5356266 3.74 3.79
(2,3) 5761513 5762440 5829659 5833137 1.18 1.24
(3,2) 5984538 5985510 6149998 6153476 2.76 2.82
(2,0) 6446207 6446290 6481088 6481088 0.54 0.54
(0,2) 6457880 6457960 6481088 6481088 0.36 0.36

Table 7.9: Vibration frequencies ωmn (rad/s) for Case 2, with a/h = 10.

(m,n) Exact Abaqus-3D UEL1 UEL2 δ (%)

(1,1) 1211320 1211270 1223359 1223359 0.99
(0,1) 2394406 2394460 2394477 2394477 0.00
(1,0) 2394407 2394460 2394477 2394477 0.00
(1,2) 2600998 2601150 2709756 2709756 4.18
(2,1) 2951466 2951630 2983103 2983103 1.07
(0,2) 3789856 3790120 3887388 3887388 2.57
(2,0) 4447030 4448480 4731084 4731084 6.39
(2,2) 4788771 4788880 4788953 4788953 0.00
(1,3) 4788776 4788880 4788953 4788953 0.00
(3,1) 5029363 5029970 5099489 5099489 1.39
(2,3) 5260431 5261760 5516910 5516910 4.88
(3,2) 5583238 5583870 5695895 5695895 2.02

From the results for thin plates in tables 7.4 and 7.5, to moderately thick plates in tables 7.6 to 7.9,

one can see an increase in the relative discrepancy between the predicted vibration frequencies of the

UEL models and the associated reference solutions. However it remains very low (∼ 1%), specially for

the first flexural modes and for the special membrane modes. Furthermore, in Case 2 the discrepancy

between results increases for the higher-order flexural modes, such as the (1, 2) and (2, 3), as well as for

the second pair of special modes (0, 2) and (2, 0).
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7.4 Thick Plates
For the thicker plates with a/h = 4, the vibration frequencies and associated modes for both plates

of Case 1 and Case 2 are shown in the tables 7.10 and 7.11, respectively. From the comparison of the

results predicted by the UEL models and the exact solutions reported by Moleiro et al. [13], one can

conclude that both UEL models predict the first twelve vibration modes and associated frequencies for

thick plates, with relatively good accuracy to the exact ones. When comparing the Abaqus-3D results to

the exact solutions, in table 7.2, one can notice an excellent resemblance between the results, at cost of

higher computational effort, as shown in table 7.3, by considering two brick elements per layer.

Table 7.10: Vibration frequencies ωmn (rad/s) for Case 1, with a/h = 4.

(m,n) Exact Abaqus-3D UEL1 UEL2 δ1 (%) δ2 (%)

(1,1) 5707395 5707450 5817642 5820804 1.93 1.99
(1,0) 8032970 8033060 8100807 8100807 0.84 0.84
(0,1) 8055542 8055640 8100807 8100807 0.56 0.56
(1,2) 10142101 10142400 10245147 10256848 1.02 1.13
(2,1) 10524397 10524800 10791589 10802973 2.54 2.65
(2,2) 13660384 13660800 13877023 13899159 1.59 1.75
(1,3) 15219227 15219900 15358866 15390173 0.92 1.12
(2,0) 15676601 15676800 16190862 16190862 3.28 3.28
(0,2) 15841211 15841400 16190862 16190862 2.21 2.21
(3,1) 15957590 15958500 16206989 16236715 1.56 1.75
(2,3) 17869324 17869900 18085698 18130287 1.21 1.46
(3,2) 18305531 18306300 18539485 18582808 1.28 1.51

Table 7.11: Vibration frequencies ωmn (rad/s) for Case 2, with a/h = 4.

(m,n) Exact Abaqus-3D UEL1 UEL2 δ (%)

(1,1) 5224114 5223940 5389470 5389470 3.17
(0,1) 5985925 5986050 5986192 5986192 0.00
(1,0) 5985936 5986060 5986192 5986192 0.00
(1,2) 9308119 9308340 9883699 9883699 6.18
(2,1) 9862718 9862790 10072803 10072803 2.13
(0,2) 11971204 11971500 11972067 11972067 0.01
(2,0) 11971291 11971600 11972067 11972067 0.01
(2,2) 12524293 12524600 13047874 13047874 4.18
(1,3) 14113537 14115100 14938916 14938916 5.85
(3,1) 14835346 14835800 15120431 15120431 1.92
(2,3) 16414198 16415600 17199312 17199312 4.78
(3,2) 16720868 16721400 17243900 17243900 3.13

Again, in Case 1 similar vibration frequencies are achieved using both UEL models, being coinci-

dent for the membrane modes, while in Case 2, both UEL results are coincident. Hence, the linear

z-expansion takes advantage over the quadratic one by achieving the same level of accuracy with less

computational effort, as can be seen by the total number of DOFs in table 7.3.

Furthermore, the increase in relative error of the vibration frequencies, from the moderately thick

plates to the thicker ones, is less visible in the flexural modes of Case 1 than in the respective ones of

Case 2, particularly the (1, 2) and the (1, 3). The opposite occurs in the special membrane modes, which
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are perfectly estimated for Case 2, while in Case 1 the second pair of special modes, i.e., the (2, 0) and

(0, 2), exhibit a slightly discrepancy to the exact solutions.

Some representative vibration modes are represented for the plate’s mid-plane (z = 0), in figures 7.1

to 7.11, for the plate of Case 1, with a/h = 4, where the special modes, which only exhibit the harmonic

motion on the in-plane displacements, contrast with the flexural modes, where the harmonic vibration

occurs on the transverse direction.

As presented in Section 7.1, a curious result is found for Case 1, with a/h = 4, where the thirteenth

mode is a thickness mode. Besides the fact that these types of modes show a considerable variation of

the plate’s thickness as reported in Moleiro et al. [13], which is out of the scope of the FSDT assumptions

used in the developed models, the predicted vibration frequencies for the first thickness mode (1, 1)− 2

are 19595040 rad/s for UEL1 and 19595054 rad/s for UEL2. The achieved values have a relative error

to the exact solution shown in table 7.2, of near 2%, which is a very good approximation, even when

assuming a constant transverse displacement across the transverse direction. However, the associated

vibration mode is only representative for the plate’s mid-plane, since it does not correspond to the overall

physical vibration mechanism demonstrated by the exact solutions and by the piezoelectric 3D element,

when two elements per layer are used.

Figure 7.1: Fundamental mode, (1,1), of Case 1, with a/h = 4.

Figure 7.2: Mode (1,0) of Case 1, with a/h = 4. Figure 7.3: Mode (0,1) of Case 1, with a/h = 4.
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Figure 7.4: Mode (1,2) of Case 1, with a/h = 4. Figure 7.5: Mode (2,1) of Case 1, with a/h = 4.

Figure 7.6: Mode (2,2) of Case 1, with a/h = 4. Figure 7.7: Mode (1,3) of Case 1, with a/h = 4.

Figure 7.8: Mode (2,0) of Case 1, with a/h = 4. Figure 7.9: Mode (0,2) of Case 1, with a/h = 4.

Figure 7.10: Mode (3,1) of Case 1, with a/h = 4. Figure 7.11: Mode (2,3) of Case 1, with a/h = 4.
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Chapter 8

Conclusions

The present thesis reveals an useful and efficient new approach for static and free vibration analysis

of piezoelectric multilayered composite plates, through the implementation of the discrete LW electro-

elastic plate finite elements developed in Chapters 3 and 4, using Abaqus UEL subroutine presented in

Chapter 5, taking advantage of the software’s tools, such as the mesh generation, the specification of

loads and boundary conditions, as well as the robust solvers. The developed UEL models assume a LW

description for three-discrete layers, allowing both mechanical displacements and electric potential to a

priori fulfill the C0
z -requirements for the primary variables, according to Heyliger’s exact solutions [10].

Moreover, the middle discrete layer consists in an ESL model of a multilayered composite plate, being

the remaining two discrete layers the top and bottom piezoelectric face layers.

In each discrete layer, the FSDT displacement field is modified to account for the interlaminar conti-

nuity conditions and combined with two different z-expansions of the electric potential, namely a simple

linear approximation in UEL1 and a quadratic variation in UEL2. For both eight node UEL models,

the elementary mass and stiffness matrices were derived from the Hamilton’s principle and numerically

computed using Gauss-Legendre integration, with reduced integration in the shear terms, in which an

unitary shear correction factor is used for all discrete layers as first approach.

The validation of the present models, in statics and dynamics, is made with benchmark numerical

applications used for evaluation of exact solutions available on the literature, namely the reported test

cases by Moleiro et al. [13]. Specifically, two symmetric stacking sequences with different piezoelectric

materials and a multilayered graphite-epoxy core are investigated: [PZT-4/0◦ /90◦ /0◦ /PZT-4] in Case

1 and [PVDF/90◦ /0◦ /90◦ /PVDF] in Case 2, from thin to thicker square plates, with associated aspect

ratios of a/h = 100, 20, 20 and 4.
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8.1 Concluding Remarks and Achievements
In static analysis, the results of the developed models are compared with the associated exact solu-

tions available for the case of simply-supported plates with applied bi-sinusoidal load (monitoring mode)

and for the case of an applied bi-sinusoidal potential (actuation mode), through the implementation of

other two subroutines available in Abaqus for specifying loads and boundary conditions. Furthermore,

the assessment of the transverse shear stresses is improved in UEL2 using direct integration of the

fundamental equilibrium equations.

The predictive capabilities of the developed UEL models in static response, for thin and moderately

thick piezoelectric composite plates, under applied load or potential, is demonstrated by the resemblance

between the UEL static analysis results and the exact ones, in terms of displacements, electric potential

and in-plane stresses shown in Chapter 6. However, due to the assumption of a constant transverse

shear strain state in each discrete layer, some shortcomings are detected, particularly in the applied

load case. In fact, for the applied load case, the FSDT assumptions lead to an inaccurate description of

the in-plane electric displacements within the piezoelectric layers, since these variables are dependent

on the shear strains, which are assumed to be constant in each discrete layer. Also, even the quadratic

z-expansion for the electric potential appears to be slightly inappropriate for a sufficiently accurate eval-

uation of the transverse electric displacements for the piezoelectric layers of moderately thick plates,

under applied load.

The aforementioned discrepancies become more pronounced for moderately thick plates with a/h =

20 or 10 of Case 2, where the transversely softer piezoelectric polymer PVDF undergoes in larger normal

compressibility effects, where the transverse normal strains and transverse shear strains play an impor-

tant role. Therefore, in the applied load case, a poorest performance of both UEL models is achieved

in the assessment of the in-plane displacements, in-plane stresses as well as in the electric poten-

tial distribution and consequently on the electric displacements, comparatively to Case 1 that concerns

the piezoceramic PZT-4. Likewise, for the applied potential case, this transversely softer behaviour of

PVDF produces considerable through-thickness variations of the transverse displacement, that can not

be taken into account in the present FSDT based models, with negligible transverse normal strains.

On the other hand, the static response to an applied potential of plates with the piezoceramic PZT-

4 in Case 1, almost match the exact solutions for thin and moderately thick plates, including in-plane

stresses and electric displacements. In this case, the hypothesis of constant transverse displacement is

far more accurate than for the PVDF case, being the transverse displacements of the UEL2 model the

most precise comparatively to UEL1. This result suggest that the present electro-elastic elements are

more suitable to be used in the analysis of sensors or actuators made of harder piezoelectric materials.

Regarding the evaluation of the transverse shear stresses, it is concluded that the direct integration of

the equilibrium equations provides a better description for these stresses than the constitutive approach,

fulfilling the interlaminar continuity conditions and the stress free conditions for both top and bottom

surfaces of the plate. Although both methods fail on an accurate determination of the transverse shear

stresses with respect to the exact solutions, both constitutively and equilibrium derived stresses give
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an idea of the stress state in each layer, where the second ones offer an exact distribution expect for a

correction factor, dependent on the loading, dimensions and material properties.

Comparing the accuracy of the equilibrium derived stresses in Case 1 to Case 2, it is demonstrated

that for Case 2 the predicted results are the closest to the exact solutions, particularly for the applied

potential condition. However, for the stacking scheme of Case 1, slightly more precise results are ob-

tained in the applied load case rather than in the applied potential. Ultimately, the discrepancy found in

the equilibrium derived stresses relatively to the exact solutions is more dependent on the material and

on the loading and boundary conditions, than on the plate’s aspect ratio.

For free vibration analysis, the available exact solutions are also restricted to simply-supported plates,

being the electric boundary conditions of most interest the grounded homogeneous electric potential

boundary conditions for both plate surfaces. In this case, the first twelve vibration modes and frequen-

cies, obtained using the UEL models, are additionally compared to one piezoelectric brick element avail-

able in Abaqus, for the same stacking sequences and aspect ratios used in static analysis. Noting that

the associated exact solutions are only presented for the thicker plates with a/h = 10 and 4, reported by

Moleiro et al. [13].

The free vibration analysis results, for both stacking sequences, presented in Chapter 7, demonstrate

a good behaviour of both UEL models in the evaluation of at least the first twelve vibration frequencies in

agreement with the reference solutions, including special membrane modes, from thin to thicker plates.

Although for thick plates with a/h = 4, the results match with relatively good accuracy the first twelve

vibration frequencies, the use of the developed models for the determination of higher-order modes is

limited to the earliest appearance of thickness modes in thick plates, comparatively to moderately thick

and thin plates. Due to their inherent complex behaviour, thickness modes are out of the scope of validity

of the present models due to the assumption of negligible transverse normal strains in the developed

first-order models.

Ultimately, the main achievements of the present thesis is the development, implementation and val-

idation, with exact solutions, of two LW electro-elastic UEL models in Abaqus, completing the lack of

piezoelectric plate elements in the software’s library. In fact, the present work and achieved results rep-

resent a complement to the literature, particularly by implementing an Abaqus UEL subroutine to access

a comprehensive comparison of the performance of two LW electro-elastic plate elements relatively to

the exact solutions, in both static and free vibration analysis, for two different piezoelectric materials and

four side-to-thickness ratios.

To sum up, the conformity between the UEL results and the exact solutions in the test cases, suggests

the capability of the developed elements to perform static analysis, in monitoring modes and specially

in actuation modes, of thin and moderately thick piezoelectric multilayered composite plates, as well as

to perform free vibration analysis to access the vibration modes and associated frequencies. However,

some inherent limitations of the FSDT displacement field must be kept in mind, with an overall advantage

in static analysis of the quadratic z-expansion for the electric potential. The developed models represent

a breakthrough for preliminary modelling and analysis of piezoelectric smart structures, since the devel-

oped finite element models can be easily implement for other flat geometries, with different boundary
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conditions and also with less computational effort than Abaqus-3D elements. Furthermore, due to the

highlighted level of accuracy in free vibration analysis, both finite element models are suitable to be used

in optimization processes, as well as in active vibration control using damping treatments with feed-back

control laws.

8.2 Future Work
The present work opens several possibilities for future work, regarding not only improvements of

the present LW models, but also the application of similar discrete LW descriptions, using Abaqus UEL

subroutine or other computational tools, to investigate different phenomena occurring in multilayered

composite plates.

Some suggestions can be made to improve the performance of the present models, specially for thick

plates, where a refined-FSDT or the HSDT can be used rather than the simple FSDT. Further improve-

ments can be made by considering a generalized formulation with an arbitrary number of layers, as well

as by including transverse normal strains by means of Reissner’s Variational Theorem. Similarly, for the

description of the electric potential, one could think on using a cubic z-expansion or a refined quadratic

one with trigonometric terms, in order to better evaluate the evolution of the electric displacements,

particularly for the case of an applied load in static analysis.

Furthermore, the present models can be applied for optimization purposes, namely in active damping

treatments of plates, where the optimal location and geometry of the piezoelectric sensors and actuators

can be estimated. In this sense, the inclusion of frequency-dependent materials in the models, such as

the presence of viscoeleastic layers, is also an interesting improvement, allowing the analysis of active-

passive multilayered composite plates.

Regarding the application of similar formulations for analysis of other multiphysic phenomena associ-

ated with multilayered composite plates, one could think on use the same type of discrete LW approach

to access thermo-elastic effects or even hygro-thermo-elastic effects by adding the moister absorption

mechanisms. Also, plates with functionally graded materials can also be considered as a possible issue

of study using LW plate elements.
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Appendix A

Piezoelectric Constitutive Equations

Piezoelectric constitutive equations can be derived in the same way as the Hooke’s law for pure elas-

tic materials. For this, an energetic principle must be used following the first law of thermodynamics,

adding the contribution from the work done by the electric displacement in the electric field to the elastic

deformation work, according to Campos [5].

A thermo-electro-elastic evolution over a piezoelectric material results in an infinitesimal variation of

internal energy dU , described following the first law of thermodynamics as shown,

dU = T dS + dW (A.1)

where T is the absolute temperature, S the entropy and dW an infinitesimal of work, which is set to be

the sum of both mechanical and electrical components, as follows:

dW = σijdεij −DidEi (A.2)

Replacing equation (A.2) in equation (A.1), one obtains the following energy balance:

dU = T dS + σijdεij −DidEi (A.3)

So far, from the previous equation, the total energy U is a function of the following state variables:

entropy, strain field and electric field. From this point on, since the temperature is more reliable to mea-

sure than the entropy, the dependency entropy will be replaced by a dependency on the temperature,

by means of a Legendre’s transform that represents the free energy, Ψ0, according to Yang [38] and

Reddy’s book [17]. Defining Ψ0 as Ψ0 = U − T S, one obtains the energy balance in equation (A.3),

written in terms of Ψ0 as shown,

dΨ0 = σijdεij −DidEi − SdT (A.4)

which expresses the free energy as a function of the new state variables: temperature, strain field and
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electric field. Noting that from equation (A.4), one obtains the following identities:

σij =
∂Ψ0

∂εij
, Di = −∂Ψ0

∂Ei
, S = −∂Ψ0

∂T
(A.5)

The presence of the temperature in equation (A.4) implies a couple phenomena between mechan-

ical, electrical and thermal domains. A more complex constitutive equation can be achieved by taking

into account thermal effects, where the coefficient of thermal expansion and pyroelectric properties are

present. Excluding pyroelectric effects for simplicity, the piezoelectric constitutive equations can be de-

rived, assuming that the temperature remains constant in equation (A.4), which means that dT = 0,

leading to:

dΨ0 = σijdεij −DidEi (A.6)

Now, equation (A.6) provides a stress field and electric displacement field dependent both on strains

and electric field components.

Defining the elastic tensor Cijkl, the piezoelectric tensor eijk and the dielectric tensor εij as follows,

Cijkl ≡
∂σij
∂εkl

=
∂2Ψ0

∂εkl∂εij
=

∂2Ψ0

∂εij∂εkl
≡ Cklij

eijk ≡ −
∂σij
∂Ek

= − ∂2Ψ0

∂εij∂Ek
= − ∂2Ψ0

∂Ek∂εij
=
∂Dk

∂εij
≡ ejik

εij ≡
∂Di

∂Ej
= − ∂2Ψ0

∂Ej∂Ei
= − ∂2Ψ0

∂Ei∂Ej
=
∂Dj

∂Ei
≡ εji

(A.7)

one obtains the differential form of the constitutive equations as shown:

dσij = Cijkldεkl − eijkdEk

dDi = ejkidεjk + εijdEj

(A.8)

Assuming a constant elastic tensor Cijkl, piezoelectric tensor eijk and dielectric tensor εij , the inte-

gration of equations (A.8) leads to the linear piezoelectric constitutive equations as follows:

σij = Cijklεkl − eijkEk

Di = ejkiεjk + εijEj

(A.9)

The 4th-order constitutive elastic tensor Cijkl is doubly symmetric and symmetric in the first and last

two indices. Hence, the elastic tensor has in general 21 independent entries as such as a symmetric 6×6

matrix. The piezoelectric tensor is a symmetric 3rd-order tensor, having 18 independent components,

while the dielectric tensor εij is a symmetric 2nd-order tensor, with 6 independent components

A reduced number of independent components is found for some types of material systems, such as

the orthotropic, the transversely isotropic or the isotropic material systems, as can bee seen in Section

2.1 and in more detail in Reddy’s book [17].
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Appendix B

Electro-elastic Variational Principle

Consider an arbitrary elastic solid, with volume domain Ω, made of an anisotropic composite material

with piezoelectric effect, subjected to a volume force fi. According to Reddy [17], following a linear

momentum balance to an infinitesimal piece of volume, the equilibrium equation, in the i-direction, in

terms of the Cauchy stress tensor σij and the displacement field ui is given by,

∂σij
∂xj

+ fi = ρ
∂2ui
∂t2

on Ω (B.1)

and from an angular momentum balance, the symmetry property of the stress tensor, i.e., σij = σji is

proved.

From the electrostatics point of view, the Gauss law for the electric displacement field, in the absence

of volumetric distributed charges, is valid over the piezoelectric medium according to Yang [38],

∂Di

∂xi
= 0 on Ω (B.2)

Essential and natural boundary conditions for the differential equations (B.1) and (B.2) are respec-

tively,

ui = usi on Su , φ = φs on Sφ (B.3)

and

σijnj = tsi on St , Dini = Qs on SQ (B.4)

representing applied displacement usi , applied potential φs, applied stress tsi and applied surface charge

Qs.

Moreover, the electric field is assumed to be irrotational, i.e., conservative, since negligible magnetic

effects may be assumed, ∂tBi ≈ 0, leading to an electro-quasi-static description. Following the Faraday’s

law accordingly to Serway’s book [36] one obtains,

εijk∇jEk = −∂tBi = 0 (B.5)
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where ∇j is the spatial gradient operator in the j-direction, ∂t the time derivative operator and εijk is the

Lévi-Civita symbol. Consequently, from the fundamental theorem of calculus applied to the Faraday’s

law in equation (2.5), the electric field can be represented in terms of a gradient of a scalar field, the

electric potential φ, as follows:

Ek = − ∂φ

∂xk
(B.6)

Substituting the piezoelectric constitutive equations (A.9), into the coupled governing differential

equations of linear momentum (B.1) and Gauss law (B.2), and using the field-potential relation in equa-

tion (B.6), as well as the infinitesimal strain tensor definition, i.e.,

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
(B.7)

one obtains the following displacement based strong formulation for piezoelectric analysis as shown,

1

2
Cijkl

(
∂2uk
∂xj∂xl

+
∂2ul

∂xj∂xk

)
+ eijk

∂2φ

∂xj∂xk
+ fi = ρ

∂2ui
∂t2

on Ω (B.8)

εij
∂2φ

∂xi∂xj
− 1

2
ejki

(
∂2uk
∂xi∂xj

+
∂2uj
∂xi∂xk

)
= 0 on Ω (B.9)

equipped with essential and natural boundary conditions in equations (B.3) and (B.4), respectively.

Following Reddy’s book [17], the principle of virtual displacements states that the virtual work for

an arbitrary admissible variable of the displacement field δui and potential δφ is null in equilibrium.

Hence, and according to Benjeddou [20], for an arbitrary admissible variation of displacement δui and

an admissible variation of electric potential δφ, equations (B.1) and (B.2) are equivalent to:

∫
Ω

(
∂σij
∂xj

+ fi − ρ
∂2ui
∂t2

)
δui +

∂Di

∂xi
δφ dΩ = 0 (B.10)

and using the linear property of the integral operator, one obtains:

∫
Ω

∂σij
∂xj

δuidΩ +

∫
Ω

fiδuidΩ−
∫

Ω

ρ
∂2ui
∂t2

δuidΩ +

∫
Ω

∂Di

∂xi
δφ dΩ = 0 (B.11)
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The first and last terms of equation (B.11) can now be simplified using integration by parts and

the divergence theorem, accordingly to Reddy’s book [18]. Also the symmetry property of the stress

tensor must be taken into account, as well as the natural boundary conditions (B.4), the piezoelectric

constitutive equations (A.9), the relation between electric potential and electric field in equation (B.6),

as well as the infinitesimal strain tensor definition in equation (B.7). Following this procedure, the stress

dependent term in (B.11) holds,

∫
Ω

∂σij
∂xj

δuidΩ = −
∫

Ω

σij
∂δui
∂xj

dΩ +

∮
∂Ω

σijnjδuidA

= −
∫

Ω

σij
∂δui
∂xj

dΩ +

∫
St

tiδuidA

= −1

2

∫
Ω

σij
∂δui
∂xj

+ σji
∂δuj
∂xi

dΩ +

∫
St

tiδuidA

= −
∫

Ω

σij
1

2

(
∂δui
∂xj

+
∂δuj
∂xi

)
dΩ +

∫
St

tsi δuidA

= −
∫

Ω

σijδεijdΩ +

∫
St

tsi δuidA

= −
∫

Ω

CijklεklδεijdΩ +

∫
Ω

eijkEkδεijdΩ +

∫
St

tsi δuidA

(B.12)

while the electric displacement dependent term becomes,

∫
Ω

∂Di

∂xi
δφ dΩ = −

∫
Ω

Di
∂δφ

∂xi
dΩ +

∮
∂Ω

Diniδφ dA

=

∫
Ω

DiδEi dΩ +

∫
SQ

Qsδφ dA

=

∫
Ω

ejkiεjkδEi dΩ +

∫
Ω

εijEjδEi dΩ +

∫
SQ

Qsδφ dA

(B.13)

Replacing the previous results of equations (B.12) and (B.13) into equation (B.11), one obtains the

variational principle as follows,

0 =

∫
Ω

−Cijklεklδεij + eijkEkδεij + ejkiεjkδEi + εijEjδEi + fiδui − ρ
∂2ui
∂t2

δui dΩ

+

∫
St

tsi δuidA+

∫
SQ

Qsδφ dA

(B.14)

which is equivalent to have:

∫
Ω

Cijklεklδεij − eijkEkδεij − ejkiεjkδEi − εijEjδEi − fiδui + ρ
∂2ui
∂t2

δui dΩ

=

∫
St

tsi δuidA+

∫
SQ

Qsδφ dA

(B.15)
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Appendix C

Generalized Strain and Electric Field

Matrices

For the three k-discrete layers considered in the present model, i.e., k = {t, c, b} (top, core and bot-

tom layers), the generalized strain matrices [B]
(k)
j and generalized electric field matrices [Bφ]

(k)
j for an

arbitrary j-node, regarding both models (through-thickness linear and quadratic electric potential), are

presented.

Considering a finite element present in a mesh, the generalized strains and generalized electric field

components for the k-layer, can be calculated using the respective nodal strain matrices and nodal

electric field matrices in equations (4.8) and (4.10). Where the nodal strain and electric field matrices

are derived, replacing the finite element approximation for the DOFs in the strains and electric field

definitions, for each discrete layer, in equations (3.17), (3.18), (3.19, (3.31), (3.32), (3.33) and (3.37),

following the generalized strain and electric field definitions in equations (3.22) and (3.34), respectively.

C.1 UEL1: Linear Electric Potential

Core Layers

[B]
c
j =



∂ψj
∂x 0 0 0 0 0 0 0 0

0
∂ψj
∂y 0 0 0 0 0 0 0

∂ψj
∂y

∂ψj
∂x 0 0 0 0 0 0 0

0 0 0
∂ψj
∂x 0 0 0 0 0

0 0 0 0
∂ψj
∂y 0 0 0 0

0 0 0
∂ψj
∂y

∂ψj
∂x 0 0 0 0

0 0
∂ψj
∂y 0 ψj 0 0 0 0

0 0
∂ψj
∂x ψj 0 0 0 0 0



, [Bφ]
c
j =



0
∂ψj
∂x

∂ψj
∂x 0

0
∂ψj
∂y

∂ψj
∂y 0

0 −∂ψj∂x
∂ψj
∂x 0

0 −∂ψj∂y
∂ψj
∂y 0

0 −ψj ψj 0


(C.1)
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Top Layer

[B]
t
j =



0 0 0 0 0
∂ψj
∂x 0 0 0

0 0 0 0 0 0
∂ψj
∂y 0 0

0 0 0 0 0
∂ψj
∂y

∂ψj
∂x 0 0

α1
∂ψj
∂x 0 0 α2

∂ψj
∂x 0 α3

∂ψj
∂x 0 0 0

0 α1
∂ψj
∂y 0 0 α2

∂ψj
∂y 0 α3

∂ψj
∂y 0 0

α1
∂ψj
∂y α1

∂ψj
∂x 0 α2

∂ψj
∂y α2

∂ψj
∂x α3

∂ψj
∂y α3

∂ψj
∂x 0 0

0 α1ψj
∂ψj
∂y 0 α2ψj 0 α3ψj 0 0

α1ψj 0
∂ψj
∂x α2ψj 0 α3ψj 0 0 0



, [Bφ]
t
j =



0 0
∂ψj
∂x

∂ψj
∂x

0 0
∂ψj
∂y

∂ψj
∂y

0 0 −∂ψj∂x
∂ψj
∂x

0 0 −∂ψj∂y
∂ψj
∂y

0 0 −ψj ψj



(C.2)

Bottom Layer

[B]
b
j =



0 0 0 0 0 0 0
∂ψj
∂x 0

0 0 0 0 0 0 0 0
∂ψj
∂y

0 0 0 0 0 0 0
∂ψj
∂y

∂ψj
∂x

β1
∂ψj
∂x 0 0 β2

∂ψj
∂x 0 0 0 β3

∂ψj
∂x 0

0 β1
∂ψj
∂y 0 0 β2

∂ψj
∂y 0 0 0 β3

∂ψj
∂y

β1
∂ψj
∂y β1

∂ψj
∂x 0 β2

∂ψj
∂y β2

∂ψj
∂x 0 0 β3

∂ψj
∂y β3

∂ψj
∂x

0 β1ψj
∂ψj
∂y 0 β2ψj 0 0 0 β3ψj

β1ψj 0
∂ψj
∂x β2ψj 0 0 0 β3ψj 0



, [Bφ]
b
j =



∂ψj
∂x

∂ψj
∂x 0 0

∂ψj
∂y

∂ψj
∂y 0 0

−∂ψj∂x
∂ψj
∂x 0 0

−∂ψj∂y
∂ψj
∂y 0 0

−ψj ψj 0 0



(C.3)

C.2 UEL2: Quadratic Electric Potential

Since in UEL2 model the displacement field is the same as in UEL1, the generalized strain matrices

remain the same ones as shown previously. The new generalized electric field matrices for a through-

thickness quadratic electric potential, for each discrete layer, are the following:

Core Layers

[Bφ]
c
j = −



0 0
∂ψj
∂x 0 0 0 0

0
∂ψj
∂x 0 0 0 0 0

0 0 0 0 0
∂ψj
∂x 0

0 0
∂ψj
∂y 0 0 0 0

0
∂ψj
∂y 0 0 0 0 0

0 0 0 0 0
∂ψj
∂y 0

0 0 ψj 0 0 0 0

0 ψj 0 0 0 0 0

0 0 0 0 0 ψj 0



(C.4)
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Top Layer

[Bφ]
t
j = −



0 0 0
∂ψj
∂x 0 0 0

0 0
∂ψj
∂x 0 0 0 0

0 0 0 0 0 0
∂ψj
∂x

0 0 0
∂ψj
∂y 0 0 0

0 0
∂ψj
∂y 0 0 0 0

0 0 0 0 0 0
∂ψj
∂y

0 0 0 ψj 0 0 0

0 0 ψj 0 0 0 0

0 0 0 0 0 0 ψj



(C.5)

Bottom Layer

[Bφ]
b
j = −



0
∂ψj
∂x 0 0 0 0 0

∂ψj
∂x 0 0 0 0 0 0

0 0 0 0
∂ψj
∂x 0 0

0
∂ψj
∂y 0 0 0 0 0

∂ψj
∂y 0 0 0 0 0 0

0 0 0 0
∂ψj
∂y 0 0

0 ψj 0 0 0 0 0

ψj 0 0 0 0 0 0

0 0 0 0 ψj 0 0



(C.6)
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Appendix D

Generalized Constitutive Matrices

In the present models, generalized constitutive equations appear as a relation between the stress re-

sultants and the generalized strain and electric field. For an arbitrary k-discrete layer (where k stands

for top, core or bottom layers), the generalized matrices in equation (3.44) are determined for the UEL1

model, with a through-thickness linear electric potential.

D.1 UEL1: Linear Electric Potential

From the integration across the thickness of equation (3.44), one obtains the generalized constitutive

matrices as follows:

[Q̂](k) =



Q̄11H̄0(k)
Q̄12H̄0(k)

Q̄16H̄0(k)
Q̄11H̄1(k)

Q̄12H̄1(k)
Q̄16H̄1(k)

0 0

Q̄12H̄0(k)
Q̄22H̄0(k)

Q̄26H̄0(k)
Q̄12H̄1(k)

Q̄22H̄1(k)
Q̄26H̄1(k)

0 0

Q̄16H̄0(k)
Q̄26H̄0(k)

Q̄66H̄0(k)
Q̄16H̄1(k)

Q̄26H̄1(k)
Q̄66H̄1(k)

0 0

Q̄11H̄1(k)
Q̄12H̄1(k)

Q̄16H̄1(k)
Q̄11H̄2(k)

Q̄12H̄2(k)
Q̄16H̄2(k)

0 0

Q̄12H̄1(k)
Q̄22H̄1(k)

Q̄26H̄1(k)
Q̄12H̄2(k)

Q̄22H̄2(k)
Q̄26H̄2(k)

0 0

Q̄16H̄1(k)
Q̄26H̄1(k)

Q̄66H̄1(k)
Q̄16H̄2(k)

Q̄26H̄2(k)
Q̄66H̄2(k)

0 0

0 0 0 0 0 0 KsQ̄44H̄0(k)
KsQ̄45H̄0(k)

0 0 0 0 0 0 KsQ̄45H̄0(k)
KsQ̄55H̄0(k)


(D.1)

[ê](k) =



0 0 0 0 ē31H̄0(k)
/h(k)

0 0 0 0 ē32H̄0(k)
/h(k)

0 0 0 0 ē36H̄0(k)
/h(k)

0 0 0 0 ē31H̄1(k)
/h(k)

0 0 0 0 ē32H̄1(k)
/h(k)

0 0 0 0 ē36H̄1(k)
/h(k)

ē14H̄0(k)
/2 ē24H̄0(k)

/2 ē14H̄1(k)
/h(k) ē24H̄1(k)

/h(k) 0

ē15H̄0(k)
/2 ē25H̄0(k)

/2 ē15H̄1(k)
/h(k) ē25H̄1(k)

/h(k) 0



(D.2)
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[ε̂](k) =



εxxH̄0(k)
/4 εxyH̄0(k)

/4 εxxH̄1(k)
/(2h(k)) εxyH̄1(k)

/(2h(k)) 0

εxyH̄0(k)
/4 εyyH̄0(k)

/4 εxyH̄1(k)
/(2h(k)) εyyH̄1(k)

/(2h(k)) 0

εxxH̄1(k)
/(2h(k)) εxyH̄1(k)

/(2h(k)) εxxH̄2(k)
/h2

(k) εxyH̄2(k)
/h2

(k) 0

εxyH̄1(k)
/(2h(k)) εyyH̄1(k)

/(2h(k)) εxyH̄2(k)
/h2

(k) εyyH̄2(k)
/h2

(k) 0

0 0 0 0 εzzH̄0(k)
/h2

(k)


(D.3)

In this generalized constitutive matrices, thickness integrals of the z-dependent functions, contained

in [S](k) and [Sφ](k) matrices, are represented by H̄n(k)
, with n = {0, 1, 2, 3} and k = {b, c, t}, defined as,

H̄n(k)
=

[
(z − z̄k)n+1

n+ 1

]z=zsup
(k)

z=zinf
(k)

(D.4)

where zinf(k) and zsup(k) are the bottom and top transverse coordinates of the k-discrete layer, respectively,

and z̄k is the transverse coordinate of the k-layer mid-plane. Moreover, the elastic, piezoelectric and

dielectric constants must be properties of the material associated to the k-layer.

D.2 UEL2: Quadratic Electric Potential
Since in the UEL2 model the displacement field is the same as in UEL1 model, hence the generalized

constitutive elastic matrix [Q̂] remains the same as for UEL1. The new generalized constitutive piezo-

electric and dielectric matrices for a through-thickness quadratic electric potential are not presented for

brevity. It can be noticed that they are similar to the previous ones, adding higher order terms due to a

higher order description for the electric potential.
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Appendix E

UEL1 Static Analysis Results for Thin

Plates

In this appendix, the UEL1 model static analysis results are presented, for Case 1, [PZT-4/0◦ /90◦ /0◦ /PZT-

4], and Case 2, [PVDF/90◦ /0◦ /90◦ /PVDF], regarding thin plates with a/h = 100. Both applied load and

applied potential results are respectively shown in tables E.1 and E.2 for Case 1, and in tables E.3 and

E.4 for Case 2.

As mentioned in Chapter 6, the results with UEL1 are mostly similar to the already presented UEL2

results, namely to the ones present in tables 6.3 to 6.6 for Case 1, and in tables 6.21 to 6.24 for Case 2.

E.1 Case 1- Transversely Isotropic Piezoelectric Layers

Table E.1: UEL1 Results for Case 1, with a/h = 100, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012 Dz × 1012 τxz τyz

1/2 -6500.18 41496.31 0.000 3084.31 2790.69 -61294.64 5.62 5.62
2/5 -5196.76 41496.31 40.211 2586.52 1141.59 61307.07 7.22 7.22
2/5 -5196.76 41496.31 40.211 2216.19 -3.91 0.00 25.24 12.15

2/15 -1732.25 41496.31 40.211 738.73 -3.91 0.00 25.24 12.15
2/15 -1732.25 41496.31 40.211 73.07 -3.35 0.00 16.10 19.06
-2/15 1732.25 41496.31 40.211 -73.07 -3.35 0.00 16.10 19.06
-2/15 1732.25 41496.31 40.211 -738.73 -3.91 0.00 25.24 12.15
-2/5 5196.76 41496.31 40.211 -2216.19 -3.91 0.00 25.24 12.15
-2/5 5196.76 41496.31 40.211 -2586.52 1141.59 -61307.07 7.22 7.22
-1/2 6500.18 41496.31 0.000 -3084.31 2790.69 61294.64 5.62 5.62
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Table E.2: UEL1 Results for Case 1, with a/h = 100, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108 Dz × 108 τxz τyz

1/2 -2.861 -1.224 1.0000 -2.360 -6.097 -0.359 0.0061 0.0064
2/5 -1.436 -1.224 0.9998 -2.941 -6.096 -0.344 -0.0034 -0.0031
2/5 -1.436 -1.224 0.9998 0.606 -0.008 -0.332 -0.0002 0.0000

2/15 -1.480 -1.224 0.6666 0.650 -0.006 -0.332 -0.0002 0.0000
2/15 -1.480 -1.224 0.6666 0.071 -0.004 -0.332 -0.0001 0.0000
-2/15 -1.612 -1.224 0.3334 0.076 -0.003 -0.332 -0.0001 0.0000
-2/15 -1.612 -1.224 0.3334 0.693 -0.002 -0.332 -0.0002 0.0000
-2/5 -1.700 -1.224 0.0002 0.737 0.000 -0.332 -0.0002 0.0000
-2/5 -1.700 -1.224 0.0002 -2.657 -0.001 -0.332 0.0086 0.0083
-1/2 -1.750 -1.224 0.0000 -2.642 0.000 -0.332 -0.0005 -0.0008

E.2 Case 2- Orthotropic Piezoelectric Layers

Table E.3: UEL1 Results for Case 2, with a/h = 100, under applied load.
z/h u× 1012 w × 1011 φ× 103 σxx Dx × 1012 Dz × 1012 τxz τyz

1/2 -8366.16 53402.20 0.00 6351.84 -22.29 -425.988 9.809 1.539
2/5 -6690.71 53402.20 33.71 5080.28 -34.01 425.706 9.808 1.538
2/5 -6690.71 53402.20 33.71 282.24 -2.81 0.000 18.073 17.663
-2/5 6690.71 53402.20 33.71 -282.24 -2.81 0.000 18.073 17.663
-2/5 6690.71 53402.20 33.71 -5080.28 -34.01 -425.706 9.808 1.538
-1/2 8366.16 53402.20 0.00 -6351.84 -22.29 425.988 9.809 1.539

Table E.4: UEL1 Results for Case 2, with a/h = 100, under applied potential.
z/h u× 1012 w × 1011 φ σxx Dx × 108 Dz × 108 τxz τyz

1/2 -1.182 0.020 1.000 -1.096 -0.035 -0.3144 -0.002 -0.004
2/5 -1.188 0.020 0.972 -1.091 -0.003 -0.3144 -0.001 -0.003
2/5 -1.188 0.020 0.972 0.055 -0.008 -0.3141 0.000 0.000
-2/5 -1.183 0.020 0.028 0.054 0.000 -0.3141 0.000 0.000
-2/5 -1.183 0.020 0.028 -1.093 -0.001 -0.3140 0.001 0.003
-1/2 -1.183 0.020 0.000 -1.093 0.000 -0.3140 0.002 0.004
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